中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
海洋研究所 [2]
长春光学精密机械与物... [1]
自动化研究所 [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [5]
内容类型
期刊论文 [3]
会议论文 [1]
学位论文 [1]
发表日期
2024 [2]
2023 [2]
2010 [1]
学科主题
筛选
浏览/检索结果:
共5条,第1-5条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
卡尔曼滤波算法在波浪浮标数据处理中的应用研究
学位论文
OAI收割
中国科学院海洋研究所: 中国科学院大学, 2024
作者:
蒋莎
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2024/06/13
波浪观测
波浪浮标
加速度传感器
Sage-Husa自适应卡尔曼滤波
海浪谱
Adaptive Kalman Filter Based on Online ARW Estimation for Compensating Low-Frequency Error of MHD ARS
期刊论文
OAI收割
IEEE Transactions on Instrumentation and Measurement, 2024, 卷号: 73, 页码: 1-10
作者:
Su, Yunhao
;
Han, Junfeng
;
Ma, Caiwen
;
Wu, Jianming
;
Wang, Xuan
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2024/07/22
Angular random walk (ARW)
magnetohydrodynamic angular rate sensor (MHD ARS)
microelectromechanical system (MEMS) gyroscope
Sage-Husa adaptive Kalman filter(SHAKF)
signal fusion
Advancements in Buoy Wave Data Processing through the Application of the Sage-Husa Adaptive Kalman Filtering Algorithm
期刊论文
OAI收割
SENSORS, 2023, 卷号: 23, 期号: 16, 页码: 18
作者:
Jiang, Sha
;
Chen, Yonghua
;
Liu, Qingkui
  |  
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2023/12/13
Sage-Husa adaptive kalman filter
combined filter
wave direction spectrum
acceleration sensor
A Novel Adaptive Kalman Filter Based on Credibility Measure
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2023, 卷号: 10, 期号: 1, 页码: 103-120
作者:
Quanbo Ge
;
Xiaoming Hu
;
Yunyu Li
;
Hongli He
;
Zihao Song
  |  
收藏
  |  
浏览/下载:53/0
  |  
提交时间:2023/01/03
Credibility
expectation maximization-particle swarm optimization method (EM-PSO)
filter calculated mean square errors (MSE)
inaccurate models
Kalman filter
Sage-Husa
true MSE (TMSE)
Application of adaptive Kalman filter technique in initial alignment of strapdown inertial navigation system (EI CONFERENCE)
会议论文
OAI收割
29th Chinese Control Conference, CCC'10, July 29, 2010 - July 31, 2010, Beijing, China
作者:
Liu P.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/03/25
In order to improve the alignment precision and convergence speed of strap-down inertial navigation system
but in the active system most noise statistical characteristics are unknown
an initial alignment method based on Sage-Husa adaptive filter is presented. We also derived the exactitude alignment error model and adaptive Kalman filter equation in the azimuth of small misalignment angle. As usual
in this case
known the noise statistical characteristics
we introduce the adaptive Kalman filter. It uses the information of observed data
Kalman filter is suitable
on-line estimation noise statistical characteristics and state simultaneously in order to improve the filter continuously
so
the filter has a higher estimation accuracy than the conventional Kalman filter. By simulating verifying
the adaptive Kalman filter enhances the convergence speed and alignment accuracy effectively.