中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [1]
海洋研究所 [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [3]
内容类型
期刊论文 [2]
会议论文 [1]
发表日期
2024 [1]
2023 [1]
2010 [1]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Adaptive Kalman Filter Based on Online ARW Estimation for Compensating Low-Frequency Error of MHD ARS
期刊论文
OAI收割
IEEE Transactions on Instrumentation and Measurement, 2024, 卷号: 73, 页码: 1-10
作者:
Su, Yunhao
;
Han, Junfeng
;
Ma, Caiwen
;
Wu, Jianming
;
Wang, Xuan
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2024/07/22
Angular random walk (ARW)
magnetohydrodynamic angular rate sensor (MHD ARS)
microelectromechanical system (MEMS) gyroscope
Sage-Husa adaptive Kalman filter(SHAKF)
signal fusion
Advancements in Buoy Wave Data Processing through the Application of the Sage-Husa Adaptive Kalman Filtering Algorithm
期刊论文
OAI收割
SENSORS, 2023, 卷号: 23, 期号: 16, 页码: 18
作者:
Jiang, Sha
;
Chen, Yonghua
;
Liu, Qingkui
  |  
收藏
  |  
浏览/下载:13/0
  |  
提交时间:2023/12/13
Sage-Husa adaptive kalman filter
combined filter
wave direction spectrum
acceleration sensor
Application of adaptive Kalman filter technique in initial alignment of strapdown inertial navigation system (EI CONFERENCE)
会议论文
OAI收割
29th Chinese Control Conference, CCC'10, July 29, 2010 - July 31, 2010, Beijing, China
作者:
Liu P.
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2013/03/25
In order to improve the alignment precision and convergence speed of strap-down inertial navigation system
but in the active system most noise statistical characteristics are unknown
an initial alignment method based on Sage-Husa adaptive filter is presented. We also derived the exactitude alignment error model and adaptive Kalman filter equation in the azimuth of small misalignment angle. As usual
in this case
known the noise statistical characteristics
we introduce the adaptive Kalman filter. It uses the information of observed data
Kalman filter is suitable
on-line estimation noise statistical characteristics and state simultaneously in order to improve the filter continuously
so
the filter has a higher estimation accuracy than the conventional Kalman filter. By simulating verifying
the adaptive Kalman filter enhances the convergence speed and alignment accuracy effectively.