中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [2]
合肥物质科学研究院 [2]
光电技术研究所 [1]
自动化研究所 [1]
采集方式
OAI收割 [6]
内容类型
期刊论文 [4]
会议论文 [2]
发表日期
2022 [1]
2020 [1]
2013 [1]
2011 [2]
2008 [1]
学科主题
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A Coarse-to-Fine Registration Approach for Point Cloud Data with Bipartite Graph Structure
期刊论文
OAI收割
ELECTRONICS, 2022, 卷号: 11
作者:
Yuan, Munan
;
Li, Xiru
;
Cheng, Longle
;
Li, Xiaofeng
;
Tan, Haibo
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2022/03/21
point cloud
coarse-to-fine registration
top-tail (TT) strategy
bipartite graph matching
3D scale-invariant feature transform (3D SIFT)
fast point feature histograms (FPFH)
trimmed iterative closest point (TrICP)
基于高光谱图像的改进SIFT特征提取与匹配
期刊论文
OAI收割
光学精密工程, 2020, 卷号: 28
作者:
丁国绅
;
乔延利
;
易维宁
;
杜丽丽
;
方薇
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2020/10/26
Scale Invariant Feature Transform (SIFT)
hyperspectral image
position criteria
image matching
尺度不变特征变换
高光谱图像
位置准则
图像匹配
Registration of Optical and SAR Satellite Images by Exploring the Spatial Relationship of the Improved SIFT
期刊论文
OAI收割
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 卷号: 10, 期号: 4, 页码: 657-661
作者:
Fan, Bin
;
Huo, Chunlei
;
Pan, Chunhong
;
Kong, Qingqun
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2015/08/12
Optical and SAR image registration
remote sensing
scale-invariant feature transform (SIFT)
spatial consistent matching (SCM)
synthetic aperture radar (SAR)
Rotation and scaling invariant feature lines for image matching (EI CONFERENCE)
会议论文
OAI收割
2011 International Conference on Mechatronic Science, Electric Engineering and Computer, MEC 2011, August 19, 2011 - August 22, 2011, Jilin, China
作者:
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/03/25
Image matching has been one of the most fundamental issues computer vision over the decades. In this paper we propose a novel method based on making use of feature lines in order to achieve more robust image matching. The feature lines have the properties of rotation and scaling invariance
coined RIFLT(Rotation invariant feature line transform). Experimental results demonstrate the effectiveness and efficiency of the proposed method. Compare with the famous powerful algorithm Scale Invariant Feature Transform(SIFT)
the proposed method is more insensitive to noise. And for certain sequence of images
which contain clear lines
the proposed method is more efficiency. Using the feature lines obtained by our method
it is possible to matching two scene images with different rotation angles
scale and light distort. 2011 IEEE.
Adaptive optics retinal image registration from scale-invariant feature transform
期刊论文
OAI收割
OPTIK, 2011, 卷号: 122, 期号: 9, 页码: 839-841
作者:
Li, Hao
;
Yang, Hansheng
;
Shi, Guohua
;
Zhang, Yudong
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2015/09/21
Adaptive optics
Retina
Scale-invariant feature transform (SIFT)
Mean shift tracking combining SIFT (EI CONFERENCE)
会议论文
OAI收割
2008 9th International Conference on Signal Processing, ICSP 2008, October 26, 2008 - October 29, 2008, Beijing, China
作者:
Xue C.
收藏
  |  
浏览/下载:66/0
  |  
提交时间:2013/03/25
A novel visual tracking algorithm to cope with occlusion and scale variation is proposed. This method combines mean shift and SIFT algorithm to track object. SIFT algorithm is invariant to rotation
translation and scale variation. But it is a timeconsuming algorithm. The wasting time is related to image size. So the proposed algorithm first adopts mean shift to initially locate object position
then SIFT operator is used to detect features in object area and model area
lastly
the proposed method matches features in these two areas and calculates the relationship between them using affine transform. According to affine transform parameters
the state of object can be adjusted in time. In order to reduce process time
an improved feature matching algorithm is proposed in this paper. Experiments show that the proposed algorithm deals with occlusion successfully and can adjust object size in time. 2008 IEEE.