中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [2]
地理科学与资源研究所 [1]
长春光学精密机械与物... [1]
采集方式
OAI收割 [4]
内容类型
SCI/SSCI论文 [1]
会议论文 [1]
学位论文 [1]
期刊论文 [1]
发表日期
2022 [1]
2016 [1]
2013 [1]
2008 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Scattered Points Interpolation with Globally Smooth B-Spline Surface using Iterative Knot Insertion
期刊论文
OAI收割
COMPUTER-AIDED DESIGN, 2022, 卷号: 148, 页码: 17
作者:
Jiang, Xin
;
Wang, Bolun
;
Huo, Guanying
;
Su, Cheng
;
Yan, Dong-Ming
  |  
收藏
  |  
浏览/下载:37/0
  |  
提交时间:2022/07/25
B-spline surface
Scattered data points interpolation
Knot vector construction
Fairing energy minimization
Estimation of river pollution source using the space-time radial basis collocation method
SCI/SSCI论文
OAI收割
2016
作者:
Li Z.
;
Mao, X. Z.
;
Li, T. S.
;
Zhang, S. Y.
  |  
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2017/11/09
Contaminant source identification
Global space-time collocation model
K-fold cross-validation
Inverse problem
Radial basis function
partial-differential-equations
basis function interpolation
contaminant source location
source identification
scattered data
hydrologic inversion
mathematical-methods
multiquadric method
release
history
optimization
一种基于单幅图像的三维人脸建模与表情合成方法
学位论文
OAI收割
工学硕士, 中国科学院自动化研究所: 中国科学院大学, 2013
舒之昕
收藏
  |  
浏览/下载:54/0
  |  
提交时间:2015/09/02
人脸建模
表情合成
主动形状模型
散点插值
运动模型
面部划分
Face Modeling
Expression Synthesis
ASM
Scattered Data Interpolation
Motion Model
Facial Region Segmentation
A MLP-PNN neural network for CCD image super-resolution in wavelet packet domain (EI CONFERENCE)
会议论文
OAI收割
2008 International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2008, October 12, 2008 - October 14, 2008, Dalian, China
Zhao X.
;
Fu D.
;
Zhai L.
收藏
  |  
浏览/下载:68/0
  |  
提交时间:2013/03/25
Image super-resolution methods process an input image sequence of a scene to obtain a still image with increased resolution. Classical approaches to this problem involve complex iterative minimization procedures
typically with high computational costs. In this paper is proposed a novel algorithm for super-resolution that enables a substantial decrease in computer load. First
decompose and reconstruct the image by wavelet packet. Before constructing the image
use neural network in place of other rebuilding method to reconstruct the coefficients in the wavelet packet domain. Second
probabilistic neural network architecture is used to perform a scattered-point interpolation of the image sequence data in the wavelet packet domain. The network kernel function is optimally determined for this problem by a MLP-PNN (Multi Layer Perceptron - Probabilistic Neural Network) trained on synthetic data. Network parameters dependent on the sequence noise level. This super-sampled image is spatially Altered to correct finite pixel size effects
to yield the final high-resolution estimate. This method can decrease the calculation cost and get perfect PSNR. Results are presented
showing the quality of the proposed method. 2008 IEEE.