中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共3条,第1-3条 帮助

条数/页: 排序方式:
High-resolution Shape From Focus Based on Line Scan Imaging 会议论文  OAI收割
Xiamen, PEOPLES R CHINA, 2020-08-25
作者:  
Ling, Xi;  Zhang, Pengchang;  Zhang, Zhaoyang;  Gao, Ruixue
  |  收藏  |  浏览/下载:26/0  |  提交时间:2021/06/04
Research on the support structure of the primary mirror of large-aperture telescope (EI CONFERENCE) 会议论文  OAI收割
3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, AOMATT 2007: Large Mirrors and Telescopes, July 8, 2007 - July 12, 2007, Chengdu, China
Yang W.; Jingxu Z.
收藏  |  浏览/下载:26/0  |  提交时间:2013/03/25
Large-aperture telescope can be used in surveying battlefield  researching landform  searching object  real-time monitoring  imaging  detecting and identifying spatial targets and so on. A large-aperture telescope for achieving high resolution power is designed to monitor spatial target and image in real time. Real-time monitoring plays an important role in military conflicts. The orbit parameter of object  quantity  geometrical shape parameter and so on can be obtained by detect spatial target. With the development of optical technology  people require larger aperture in optics-electronic (OE) system. By increasing optical aperture  the ability of collecting light and resolution power in the system can be enhanced. But the support structure of the primary mirror of large-aperture telescope will be a very difficult problem. With the increase of primary mirror aperture  the weight of the primary mirror will become larger than before. The root mean square (rms) of the primary mirror is affected by many factors  such as deadweight  deformation of heat  environment and so on. Due to the primary mirror of telescope is an important component of telescope system. By reducing the weight of primary mirror  precision of the system is ensured. During the designing phase  one can consider the supporting project of the primary mirror synthetically and analyze it roundly according to technical requirement of optical system and the effect factors. The final structural design can be reasonable. In an astronomical telescope  the surface of reflector is an important part for collecting dark radiation of celestial bodies. Its surface shape will have an effect on collecting efficiency of telescope radiant energy directly. So the rms must be very high. Optical system of large aperture  small wavelength and small focus can receive maximal light intensity. For ground-based optical astronomical telescope  the design proposed in the paper can satisfy the requirement of the possible minimum atmosphere seeing at astronomical observatory site and exert the use efficiency of the telescope adequately. So the accuracy of the traditional surface of reflector can assure that 90% of all the light energy can be focused on within the angle diameter range of the minimum atmosphere seeing  then 100% of light energy should be focused on the angle diameter range of minimum atmosphere seeing. Because the rms of mirror is very high  precise surface machining and accurate the support of mirror are very important tasks during designing and manufacturing the telescope. In the paper  various support techniques of a large-aperture telescope primary mirror are discussed and a 3.5 meter telescope system at the Starfire Optical Range (SOR) overviewed simply  which was operated by the Directed Energy Directorate of the Air Force Research Laboratory  Kirtland AFB  NM  USA from the ground-based O-E system for the observations of spatial target. We also analyze Theoretical elastic deformation of the Steward Observatory 2.3 meter mirror is analyzed.  
Key techniques of laser direct writing of fine lines on the spherical surface (EI CONFERENCE) 会议论文  OAI收割
ICO20: Optical Design and Fabrication, August 21, 2005 - August 26, 2005, Changchun, China
Liang F.; Hu J.
收藏  |  浏览/下载:21/0  |  提交时间:2013/03/25
The main principles of laser direct writing (LDW) system for lines on the spherical surface (SS) are discussed. It is pointed out that line profile is determined by the exposure dose distribution  which lies on the light intensity distribution of focus plane and the scanning speed. To improve the quality of line profile on the SS  several key techniques as follows are introduced. Firstly  the unique system configuration  four axes mutually intersecting at the center of the SS  is adopted  which ensures the shape of the focus be maintained circular during the writing period. Secondly  an automatic focus system (AFS) with the function of automatic focus in a certain range is introduced. Thirdly  to guarantee the linear velocity to accord with the exposure character of the photoresist all the time  an efficient arithmetic that controls motors run at appropriate angular velocity in different latitude is developed. Finally  to achieve a stable and well-behaved system so as to compensate the velocity instability resulting from unavoidable errors of mechanical and electronics factor  a powerful programmable multi-axis controller (PMAC) is utilized as the kernel element of the servocontrol system  and the curves of step response and parabolic response achieved by feedforward and PID loop tuning indicate that the location precision and velocity stability have reached a high level. The experimental results of LDW of lines on the SS work piece with a diameter 30 mm and a radius equal to 100 mm are given. The section analysis of the lines on the photoresist by the atomic force microscope (AFM) after exposure and development is performed. The results show that line width is about 3.0 m  and the steep sides of the lines are parallel to each other.