中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [3]
长春光学精密机械与物... [2]
计算技术研究所 [1]
采集方式
OAI收割 [6]
内容类型
期刊论文 [5]
会议论文 [1]
发表日期
2023 [2]
2021 [1]
2019 [2]
2007 [1]
学科主题
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
SOTVerse: A User-Defined Task Space of Single Object Tracking
期刊论文
OAI收割
International Journal of Computer Vision, 2023, 页码: 1-59
作者:
Shiyu, Hu
;
Xin, Zhao
;
Kaiqi Huang
  |  
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2024/01/22
Single object tracking
Experimental environment
Evaluation system
Performance analysis
Global Instance Tracking: Locating Target More Like Humans
期刊论文
OAI收割
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 卷号: 45, 期号: 1, 页码: 576-592
作者:
Hu, Shiyu
;
Zhao, Xin
;
Huang, Lianghua
;
Huang, Kaiqi
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2023/02/22
Global instance tracking
single object tracking
benchmark dataset
performance evaluation
human tracking ability
SiamCPN: Visual tracking with the Siamese center-prediction network
期刊论文
OAI收割
COMPUTATIONAL VISUAL MEDIA, 2021, 卷号: 7, 期号: 2, 页码: 253-265
作者:
Chen, Dong
;
Tang, Fan
;
Dong, Weiming
;
Yao, Hanxing
;
Xu, Changsheng
  |  
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2021/06/15
Siamese network
single object tracking
anchor-free
center point detection
The Unmanned Aerial Vehicle Benchmark: Object Detection, Tracking and Baseline
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2019, 页码: 19
作者:
Yu, Hongyang
;
Li, Guorong
;
Zhang, Weigang
;
Huang, Qingming
;
Du, Dawei
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2020/12/10
UAV
Object detection
Single object tracking
Multiple object tracking
Enhanced Multiple-Object Tracking Using Delay Processing and Binary-Channel Verification
期刊论文
OAI收割
Applied Sciences-Basel, 2019, 卷号: 9, 期号: 22, 页码: 19
作者:
M.Y.Li
;
X.He
;
Z.H.Wei
;
J.Wang
;
Z.Y.Mu
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2020/08/24
multiple object tracking,identity consistency,single object tracking,association,Chemistry,Engineering,Materials Science,Physics
Integrated intensity, orientation code and spatial information for robust tracking (EI CONFERENCE)
会议论文
OAI收割
2007 2nd IEEE Conference on Industrial Electronics and Applications, ICIEA 2007, May 23, 2007 - May 25, 2007, Harbin, China
作者:
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2013/03/25
real-time tracking is an important topic in computer vision. Conventional single cue algorithms typically fail outside limited tracking conditions. Integration of multimodal visual cues with complementary failure modes allows tracking to continue despite losing individual cues. In this paper
we combine intensity
orientation codes and special information to form a new intensity-orientation codes-special (IOS) feature to represent the target. The intensity feature is not affected by the shape variance of object and has good stability. Orientation codes matching is robust for searching object in cluttered environments even in the cases of illumination fluctuations resulting from shadowing or highlighting
etc The spatial locations of the pixels are used which allow us to take into account the spatial information which is lost in traditional histogram. Histograms of intensity
orientation codes and spatial information are employed for represent the target Mean shift algorithm is a nonparametric density estimation method. The fast and optimal mode matching can be achieved by this method. In order to reduce the compute time
we use the mean shift procedure to reach the target localization. Experiment results show that the new method can successfully cope with clutter
partial occlusions
illumination change
and target variations such as scale and rotation. The computational complexity is very low. If the size of the target is 3628 pixels
it only needs 12ms to complete the method. 2007 IEEE.