中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [3]
西安光学精密机械研究... [2]
长春光学精密机械与物... [1]
光电技术研究所 [1]
沈阳自动化研究所 [1]
合肥物质科学研究院 [1]
更多
采集方式
OAI收割 [9]
内容类型
期刊论文 [8]
会议论文 [1]
发表日期
2023 [2]
2021 [1]
2020 [1]
2019 [1]
2017 [1]
2014 [1]
更多
学科主题
computer s... [1]
computer s... [1]
computer s... [1]
engineerin... [1]
筛选
浏览/检索结果:
共9条,第1-9条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Patch Loss: A generic multi-scale perceptual loss for single image super-resolution
期刊论文
OAI收割
Pattern Recognition, 2023, 卷号: 139, 页码: 109510
作者:
An T(安泰)
;
Mao BJ(毛彬杰)
;
Xue B(薛斌)
;
Huo CL(霍春雷)
;
Xiang SM(向世明)
  |  
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2024/01/17
Single-image super-resolution
Multi-scale loss functions
Image visual perception
Perceptual metrics
Online tool wear monitoring by super-resolution based machine vision
期刊论文
OAI收割
COMPUTERS IN INDUSTRY, 2023, 卷号: 144
作者:
Zhu, Kunpeng
;
Guo, Hao
;
Li, Si
;
Lin, Xin
  |  
收藏
  |  
浏览/下载:45/0
  |  
提交时间:2022/12/22
Single image super -resolution
Sparse decomposition
Micro machining
Tool monitoring
Adversarial Multi-Path Residual Network for Image Super-Resolution
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 卷号: 30, 页码: 6648-6658
作者:
Wang QQ(王倩倩)
;
Gao QX(高全学)
;
Wu, Linlu
;
Sun G(孙干)
;
Jiao, Licheng
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2021/08/12
Feature extraction
Residual neural networks
Superresolution
Generative adversarial networks
Image reconstruction
Generators
Training
Single image super-resolution (SISR)
residual learning
deep convolutional neural network
Single-image super-resolution via joint statistic models-guided deep auto-encoder network
期刊论文
OAI收割
NEURAL COMPUTING & APPLICATIONS, 2020, 卷号: 32, 期号: 9, 页码: 4885-4896
作者:
Chen, Rong
;
Qu, Yanyun
;
Li, Cuihua
;
Zeng, Kun
;
Xie, Yuan
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2020/06/22
Non-local similarity
Split Bergman iteration
Steering kernel regression
Single-image super-resolution
Improving the signal-to-noise ratio of superresolution imaging based on single-pixel camera
期刊论文
OAI收割
IEEE Photonics Journal, 2019, 卷号: 11, 期号: 1
作者:
Wei, Ziran
;
Zhang, Jianlin
;
Xu, Zhiyong
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2021/05/06
Single pixel camera
super resolution
sparse representation
measurement matrix
image reconstruction
Coarse-to-Fine Learning for Single-Image Super-Resolution
期刊论文
OAI收割
ieee transactions on neural networks and learning systems, 2017, 卷号: 28, 期号: 5, 页码: 1109-1122
作者:
Zhang, Kaibing
;
Tao, Dacheng
;
Gao, Xinbo
;
Li, Xuelong
;
Li, Jie
收藏
  |  
浏览/下载:58/0
  |  
提交时间:2017/06/14
Correlative neighbor regression (CNR)
nonlocal means
regularization term
self-similarity
single-image super-resolution (SR)
Learning adaptive interpolation kernels for fast single-image super resolution
期刊论文
OAI收割
SIGNAL IMAGE AND VIDEO PROCESSING, 2014, 卷号: 8, 期号: 6, 页码: 1077-1086
作者:
Hu, Xiyuan
;
Peng, Silong
;
Hwang, Wen-Liang
收藏
  |  
浏览/下载:62/0
  |  
提交时间:2015/08/12
Single-image super resolution
Dual dictionary learning
Sparse representation
Learning multiple interpolation kernels
Image Super-Resolution via Double Sparsity Regularized Manifold Learning
期刊论文
OAI收割
ieee transactions on circuits and systems for video technology, 2013, 卷号: 23, 期号: 12, 页码: 2022-2033
作者:
Lu, Xiaoqiang
;
Yuan, Yuan
;
Yan, Pingkun
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2015/06/09
Double sparsity
manifold learning
single-image super-resolution (SR)
sparse coding
Study on supper resolution reconstruction based on staggered arrays (EI CONFERENCE)
会议论文
OAI收割
2011 International Conference on Electronic and Mechanical Engineering and Information Technology, EMEIT 2011, August 12, 2011 - August 14, 2011, Harbin, China
Yuan Z.
;
Xing Z.
;
Guang J.
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2013/03/25
The image resolution can be improved without increasing the requirement to optical imaging systems' parameters and decreasing the size of CCD pixel by staggered arrays technology
which arranges several CCDs in a specific mode. In this paper
an image super resolution method of improving the image resolution for 1.5 times both in two directions by 4 linear arrays staggered based on this technology is presented
which avoids the large computation in a single time by use of circulation method. This method is proved effective by the digital simulation
and a simulated experiment platform is constructed to test its feasibility. The image resolution is improved for 1.42 times of the unreconstructed image according to the imaging experiment of resolution chart
which is closed to 1.5 times in ideal case. And also
the reconstructed and unreconstructed images are evaluated by the image information entropy
which proves that the reconstructed image contains more information. 2011 IEEE.