中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [4]
成都山地灾害与环境研... [2]
长春光学精密机械与物... [1]
采集方式
OAI收割 [7]
内容类型
期刊论文 [4]
会议论文 [2]
SCI/SSCI论文 [1]
发表日期
2023 [1]
2020 [2]
2018 [1]
2016 [1]
2014 [1]
2012 [1]
更多
学科主题
筛选
浏览/检索结果:
共7条,第1-7条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Temporal Upscaling of MODIS 1-km Instantaneous Land Surface Temperature to Monthly Mean Value: Method Evaluation and Product Generation
期刊论文
OAI收割
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 卷号: 61, 页码: 5001214
作者:
Liu, Xiangyang
;
Li, Zhao-Liang
;
Li, Jia-Hao
;
Leng, Pei
;
Liu, Meng
  |  
收藏
  |  
浏览/下载:9/0
  |  
提交时间:2024/01/04
Land surface temperature
Satellites
Temperature measurement
MODIS
Temperature distribution
Atmospheric modeling
Spatial resolution
Land surface temperature (LST)
Moderate Resolution Imaging Spectroradiometer (MODIS)
monthly mean temperature
temporal upscaling
A fundamental theorem for eco-environmental surface modelling and its applications
期刊论文
OAI收割
SCIENCE CHINA-EARTH SCIENCES, 2020, 页码: 21
作者:
Yue, Tianxiang
;
Zhao, Na
;
Liu, Yu
;
Wang, Yifu
;
Zhang, Bin
  |  
收藏
  |  
浏览/下载:52/0
  |  
提交时间:2021/03/23
HASM
FTEEM
Spatial upscaling
Spatial downscaling
Spatial interpolation
Data fusion
Model-data assimilation
Model coupling
A fundamental theorem for eco-environmental surface modelling and its applications
期刊论文
OAI收割
SCIENCE CHINA-EARTH SCIENCES, 2020, 页码: 21
作者:
Yue, Tianxiang
;
Zhao, Na
;
Liu, Yu
;
Wang, Yifu
;
Zhang, Bin
  |  
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2021/03/23
HASM
FTEEM
Spatial upscaling
Spatial downscaling
Spatial interpolation
Data fusion
Model-data assimilation
Model coupling
An integrated method for validating long-term leaf area index products using global networks of site-based measurements
期刊论文
OAI收割
REMOTE SENSING OF ENVIRONMENT, 2018, 卷号: 209, 页码: 134-151
作者:
Xu, Baodong
;
Li, Jing
;
Park, Taejin
;
Liu, Qinhuo
;
Zeng, Yelu
  |  
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2018/03/19
Spatial representativeness grading
Spatial upscaling
Time-series ground measurements
Global networks
Leaf Area Index (LAI)
Validation
A METHOD FOR SPATIAL UPSCALING OF GROUND LAI MEASUREMENTS TO THE REMOTELY SENSED PRODUCT PIXEL GRID
会议论文
OAI收割
Beijing, JUL 10-15, 2016
作者:
Xu Baodong
;
Li Jing
;
Liu Qinhuo
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2020/08/20
Spatial upscaling
Leaf Area Index
Ground measurements
Validation
Can soil water measurements at a certain depth be used to estimate mean soil water content of a soil profile at a point or at a hillslope scale?
SCI/SSCI论文
OAI收割
2014
Hu W.
;
Si B. C.
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2014/12/24
Spatial variability
Time stability
Soil moisture
Upscaling
Spearman's rank correlation coefficient
Mean relative difference
temporal stability
loess plateau
near-surface
catchment scale
time
stability
moisture
storage
infiltration
variability
management
Evaluation of spatial upscaling methods based on remote sensing data with multiple spatial resolutions (EI CONFERENCE)
会议论文
OAI收割
Satellite Data Compression, Communications, and Processing VIII, August 12, 2012 - August 13, 2012, San Diego, CA, United states
Ren R.
;
Gu L.
;
Cao J.
;
Chen H.
;
Sun J.
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2013/03/25
In most applications of remote sensing data
special spatial information is required from a finer to a coarser spatial resolution with appropriate upscaling methods. The purpose of this paper is to compare and evaluate current spatial upscaling methods using MODIS remote sensing data with multiple spatial resolutions. In the research
Northeast China was selected as the study area. MODIS data with spatial resolutions of 250 m (2 bands) and 500 m (7 bands) were used as the test data. Through using the selected upscaling methods
the Band 1 and Band 2 data of MODIS were scaled up from 250 m to 500 m spatial resolution. On the basis of land cover characteristics of Northeast China
the MODIS data located in the study area was classified into the five land cover types
including water
grasslands
forests
farmlands and bare lands using maximum likelihood method. The land cover classification results were further compared with MODIS Land Cover Type product. Finally
Structural Similarity (SSIM) was selected to evaluate the effects of these upscaling methods. The research can provide more useful information for spatial scaling transformation in remote sensing data applications. 2012 SPIE.