中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
长春光学精密机械与物... [2]
南海海洋研究所 [1]
地理科学与资源研究所 [1]
计算技术研究所 [1]
深海科学与工程研究所 [1]
更多
采集方式
OAI收割 [11]
内容类型
期刊论文 [9]
会议论文 [2]
发表日期
2025 [1]
2024 [1]
2022 [2]
2020 [3]
2015 [1]
2011 [1]
更多
学科主题
Engineerin... [1]
Geochemist... [1]
Imaging Sc... [1]
Remote Sen... [1]
筛选
浏览/检索结果:
共11条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Identifying localized heat zones in urban heat islands from a hill and saddle perspective
期刊论文
OAI收割
SUSTAINABLE CITIES AND SOCIETY, 2025, 卷号: 118, 页码: 13
作者:
Yu, Wenbo
;
Yang, Jun
;
Ren, Jiayi
;
Zhang, Zhenchao
;
Sun, Dongqi
  |  
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2025/03/03
Urban heat island
Watershed algorithm
Structural segmentation
Driving mechanism
Jinan city
Surgivisor: Transformer-based semi-supervised instrument segmentation for endoscopic surgery
期刊论文
OAI收割
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 卷号: 87, 页码: 10
作者:
Wu, Zhiying
;
Lau, Chun Yin
;
Zhou, Qianang
;
Wu, Jinlin
;
Wang, Yuxi
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2023/12/21
Transformer
Semi-supervised segmentation
Structural similarity
Surgical instrument segmentation
Wheat-Net: An Automatic Dense Wheat Spike Segmentation Method Based on an Optimized Hybrid Task Cascade Model
期刊论文
OAI收割
FRONTIERS IN PLANT SCIENCE, 2022, 卷号: 13, 页码: 13
作者:
Zhang, Jiajing
;
Min, An
;
Steffenson, Brian J.
;
Su, Wen-Hao
;
Hirsch, Cory D.
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2022/06/06
wheat spike
instance segmentation
Hybrid Task Cascade model
challenging dataset
non-structural field
Structure attention co-training neural network for neovascularization segmentation in intravascular optical coherence tomography
期刊论文
OAI收割
MEDICAL PHYSICS, 2022, 页码: 16
作者:
Wu, Xiangjun
;
Zhang, Yingqian
;
Zhang, Peng
;
Hui, Hui
;
Jing, Jing
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2022/03/17
co-training
IVOCT
neovascularization segmentation
structural attention mechanism
Along-strike segmentation of the South China Sea margin imposed by inherited pre-rift basement structures
期刊论文
OAI收割
EARTH AND PLANETARY SCIENCE LETTERS, 2020, 卷号: 530, 期号: 1, 页码: 14
作者:
Zhao, Fang
;
Alves, Tiago M.
;
Xia, Shaohong
;
Li, Wei
;
Wang, Lei
  |  
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2020/03/16
South China Sea
structural inheritance
faults
magmatism
continental rifting
margin segmentation
Along-strike segmentation of the South China Sea margin imposed by inherited pre-rift basement structures
期刊论文
OAI收割
EARTH AND PLANETARY SCIENCE LETTERS, 2020, 卷号: 530, 页码: 115862
作者:
Zhao, Fang
;
Alves, Tiago M.
;
Xia, Shaohong
;
Li, Wei
;
Wang, Lei
  |  
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2020/09/22
South China Sea
structural inheritance
faults
magmatism
continental rifting
margin segmentation
Separating the Structural Components of Maize for Field Phenotyping Using Terrestrial LiDAR Data and Deep Convolutional Neural Networks
期刊论文
OAI收割
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 卷号: 58, 期号: 4, 页码: 2644-2658
作者:
Jin, Shichao
;
Su, Yanjun
;
Gao, Shang
;
Wu, Fangfang
;
Ma, Qin
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2022/03/01
Classification
deep learning
LiDAR
phenotype
segmentation
structural components
Automatic segmentation of the lateral geniculate nucleus: Application to control and glaucoma patients
期刊论文
OAI收割
JOURNAL OF NEUROSCIENCE METHODS, 2015, 卷号: 255, 页码: 104-114
作者:
Wang, Jieqiong
;
Miao, Wen
;
Li, Jing
;
Li, Meng
;
Zhen, Zonglei
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2016/01/18
Automatic segmentation
LGN
Structural MRI
Vision
TextureGrow: Object recognition and segmentation with limit prior knowledge (EI CONFERENCE)
会议论文
OAI收割
2011 International Conference on Network Computing and Information Security, NCIS 2011, May 14, 2011 - May 15, 2011, Guilin, Guangxi, China
Yao Z.
;
Han Q.
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2013/03/25
In this paper we present a new method for automatically visual recognition and semantic segmentation of photographs. Our automatically and rapidly approach based on Cellular Automation. Most of the analysis and description of recognition and segmentation are based on statistical or structural properties of this attribute
most of them need plenty of samples and prior Knowledge. In this paper
within a few evident samples (not too many)
we can first get the texture feature of each component and the structures
then select the approximately location randomly of the objects or patches of them
then we use the Cellular Automata algorithm to "grow" based on texture of different objects. The grow progress will stop When texture grow to the boundary. By this steps a new method is found which allow us use very few samples and low lever experience and get a rapidly and accuracy way to recognize and segment objects. We found that this new propose gives competitive results with limited experience and samples. 2011 IEEE.
Adaptive Image Segmentation based on Fast Thresholding and Image Merging (EI CONFERENCE)
会议论文
OAI收割
16th International Conference on Artificial Reality and Telexistence - Workshops, ICAT 2006, November 29, 2006 - December 1, 2006, Hangzhou, China
作者:
Zhang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2013/03/25
Image segmentation is the first essential and important step of low level vision. This paper proposes a novel algorithm for adaptive image segmentation
it can be applied in many conditions
based on thresholding technique and segments merging according to their characteristics combine with spatial position. Our earlier work of getting the entire information of the histogram could help choose the multiple thresholds. However
including complex target segmented. We describe the algorithm in detail and perform simulation experiments. The computation based on pixels can fully parallel processing to save time. 2006 IEEE.
not all the peaks of the histogram correspond to obvious structural unit in the image. Spatial information must be involved. This paper also suggests subjoining segments matching for video image tracking. They will give great help to image segmentation. The proposed algorithm can meet the real-time requirement and lead to higher segmentation accuracy
some types of texture can also be segmented well