中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [2]
地质与地球物理研究所 [2]
长春光学精密机械与物... [2]
自动化研究所 [2]
心理研究所 [1]
过程工程研究所 [1]
更多
采集方式
OAI收割 [13]
内容类型
期刊论文 [10]
会议论文 [3]
发表日期
2022 [2]
2021 [1]
2017 [2]
2016 [1]
2015 [1]
2014 [1]
更多
学科主题
筛选
浏览/检索结果:
共13条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Inner Dynamic Detection and Prediction of Water Quality Based on CEEMDAN and GA-SVM Models
期刊论文
OAI收割
REMOTE SENSING, 2022, 卷号: 14, 期号: 7, 页码: 17
作者:
Yang, Zhizhou
;
Zou, Lei
;
Xia, Jun
;
Qiao, Yunfeng
;
Cai, Diwen
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2022/09/21
CEEMDAN method
GA-SVM model
decomposition
prediction
water quality
Inner Dynamic Detection and Prediction of Water Quality Based on CEEMDAN and GA-SVM Models
期刊论文
OAI收割
REMOTE SENSING, 2022, 卷号: 14, 期号: 7, 页码: 17
作者:
Yang, Zhizhou
;
Zou, Lei
;
Xia, Jun
;
Qiao, Yunfeng
;
Cai, Diwen
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2022/09/21
CEEMDAN method
GA-SVM model
decomposition
prediction
water quality
Electrochemical system for anaerobic oxidation of methane by DAMO microbes with nitrite as an electron acceptor
期刊论文
OAI收割
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 卷号: 225, 页码: -
作者:
Chai, Fengguang
;
Li, Lin
;
Xue, Song
;
Xie, Fei
;
Liu, Junxin
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2022/01/04
PM2.5
Machine learning
GA-SVM
Land use regression
Method improvement
Spatial clustering
Automatic recognition system of welding seam type based on SVM method
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 卷号: 92, 期号: 1-4, 页码: 989-999
作者:
Fan, Junfeng
;
Jing, Fengshui
;
Fang, Zaojun
;
Tan, Min
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2018/01/05
Welding Seam Type Recognition
Structured-light Vision
Svm Method
Feature Extraction
Automatic recognition system of welding seam type based on SVM method
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 卷号: 92, 期号: 1-4, 页码: 989-999
作者:
Fan JF(范俊峰)
;
Jing FS(景奉水)
;
Fang ZJ(方灶军)
;
Tan M(谭民)
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2019/04/27
Welding Seam Type Recognition
Structured-light Vision
Svm Method
Feature Extraction
Prediction of viscosity of imidazolium-based ionic liquids using MLR and SVM algorithms
期刊论文
OAI收割
COMPUTERS & CHEMICAL ENGINEERING, 2016, 卷号: 92, 期号: SEP, 页码: 37-42
作者:
Zhao, Yongsheng
;
Zhang, Xiangping
;
Deng, Liyuan
;
Zhang, Suojiang
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2016/11/21
Ionic liquids
Viscosity
Support vector machine (SVM)
Multiple linear regression (MLR)
Fragment contribution-corresponding
states (FC-CS) method
Probabilistic back analysis for geotechnical engineering based on Bayesian and support vector machine
期刊论文
OAI收割
JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2015, 卷号: 22, 期号: 12, 页码: 4778-4786
作者:
Chen Bing-rui
;
Zhao Hong-bo
;
Ru Zhong-liang
;
Li Xian
  |  
收藏
  |  
浏览/下载:11/0
  |  
提交时间:2018/06/05
geotechnical engineering
back analysis
uncertainty
Bayesian theory
least square method
support vector machine (SVM)
sEMG Based Movement Quantitative Estimation of Joins Using SVM Method
会议论文
OAI收割
19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa, August 24-29, 2014
作者:
Liu, Dongsheng
;
Zhao XG(赵新刚)
;
Ye D(叶丹)
;
Zhao YW(赵忆文)
;
Wu ZW(吴镇炜)
收藏
  |  
浏览/下载:49/0
  |  
提交时间:2014/12/29
sEMG
movement estimation
quantitative estimation
SVM method
rehabilitation robot
Classification of hyperspectral image based on SVM optimized by a new particle swarm optimization (EI CONFERENCE)
会议论文
OAI收割
2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2012, June 1, 2012 - June 3, 2012, Nanjing, China
作者:
Gao X.
;
Yu P.
;
Yu P.
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2013/03/25
Support Vector Machine (SVM) is used to classify hyperspectral remote sensing image in this paper. Radial Basis Function (RBF)
which is most widely used
is chosen as the kernel function of SVM. Selection of kernel function parameter is a pivotal factor which influences the performance of SVM. For this reason
Particle Swarm Optimization (PSO) is provided to get a better result. In order to improve the optimization efficiency of kernel function parameter
firstly larger steps of grid search method is used to find the appropriate rang of parameter. Since the PSO tends to be trapped into local optimal solutions
a weight and mutation particle swam optimization algorithm was proposed
in which the weight dynamically changes with a liner rule and the global best particle mutates per iteration to optimize the parameters of RBF-SVM. At last
a 220-bands hyperspectral remote sensing image of AVIRIS is taken as an experiment
which demonstrates that the method this paper proposed is an effective way to search the SVM parameters and is available in improving the performance of SVM classifiers. 2012 IEEE.
Support Vector Machines with L-1 penalty for detecting gene-gene interactions
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2012, 卷号: 6, 期号: 5, 页码: 463-470
作者:
Shen, Yuanyuan
;
Liu, Zhe
;
Ott, Jurg
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2015/09/09
genome-wide association study
human complex disease
gene-gene interaction
SVM
support vector machine
model selection
L-1 penalty
two-stage method
data mining
bioinformatics