中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共13条,第1-10条 帮助

条数/页: 排序方式:
Inner Dynamic Detection and Prediction of Water Quality Based on CEEMDAN and GA-SVM Models 期刊论文  OAI收割
REMOTE SENSING, 2022, 卷号: 14, 期号: 7, 页码: 17
作者:  
Yang, Zhizhou;  Zou, Lei;  Xia, Jun;  Qiao, Yunfeng;  Cai, Diwen
  |  收藏  |  浏览/下载:31/0  |  提交时间:2022/09/21
Inner Dynamic Detection and Prediction of Water Quality Based on CEEMDAN and GA-SVM Models 期刊论文  OAI收割
REMOTE SENSING, 2022, 卷号: 14, 期号: 7, 页码: 17
作者:  
Yang, Zhizhou;  Zou, Lei;  Xia, Jun;  Qiao, Yunfeng;  Cai, Diwen
  |  收藏  |  浏览/下载:23/0  |  提交时间:2022/09/21
Electrochemical system for anaerobic oxidation of methane by DAMO microbes with nitrite as an electron acceptor 期刊论文  OAI收割
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 卷号: 225, 页码: -
作者:  
Chai, Fengguang;  Li, Lin;  Xue, Song;  Xie, Fei;  Liu, Junxin
  |  收藏  |  浏览/下载:20/0  |  提交时间:2022/01/04
Automatic recognition system of welding seam type based on SVM method 期刊论文  OAI收割
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 卷号: 92, 期号: 1-4, 页码: 989-999
作者:  
Fan, Junfeng;  Jing, Fengshui;  Fang, Zaojun;  Tan, Min
  |  收藏  |  浏览/下载:31/0  |  提交时间:2018/01/05
Automatic recognition system of welding seam type based on SVM method 期刊论文  OAI收割
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 卷号: 92, 期号: 1-4, 页码: 989-999
作者:  
Fan JF(范俊峰);  Jing FS(景奉水);  Fang ZJ(方灶军);  Tan M(谭民)
  |  收藏  |  浏览/下载:21/0  |  提交时间:2019/04/27
Prediction of viscosity of imidazolium-based ionic liquids using MLR and SVM algorithms 期刊论文  OAI收割
COMPUTERS & CHEMICAL ENGINEERING, 2016, 卷号: 92, 期号: SEP, 页码: 37-42
作者:  
Zhao, Yongsheng;  Zhang, Xiangping;  Deng, Liyuan;  Zhang, Suojiang
收藏  |  浏览/下载:24/0  |  提交时间:2016/11/21
Probabilistic back analysis for geotechnical engineering based on Bayesian and support vector machine 期刊论文  OAI收割
JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2015, 卷号: 22, 期号: 12, 页码: 4778-4786
作者:  
Chen Bing-rui;  Zhao Hong-bo;  Ru Zhong-liang;  Li Xian
  |  收藏  |  浏览/下载:11/0  |  提交时间:2018/06/05
sEMG Based Movement Quantitative Estimation of Joins Using SVM Method 会议论文  OAI收割
19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa, August 24-29, 2014
作者:  
Liu, Dongsheng;  Zhao XG(赵新刚);  Ye D(叶丹);  Zhao YW(赵忆文);  Wu ZW(吴镇炜)
收藏  |  浏览/下载:49/0  |  提交时间:2014/12/29
Classification of hyperspectral image based on SVM optimized by a new particle swarm optimization (EI CONFERENCE) 会议论文  OAI收割
2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2012, June 1, 2012 - June 3, 2012, Nanjing, China
作者:  
Gao X.;  Yu P.;  Yu P.
收藏  |  浏览/下载:21/0  |  提交时间:2013/03/25
Support Vector Machine (SVM) is used to classify hyperspectral remote sensing image in this paper. Radial Basis Function (RBF)  which is most widely used  is chosen as the kernel function of SVM. Selection of kernel function parameter is a pivotal factor which influences the performance of SVM. For this reason  Particle Swarm Optimization (PSO) is provided to get a better result. In order to improve the optimization efficiency of kernel function parameter  firstly larger steps of grid search method is used to find the appropriate rang of parameter. Since the PSO tends to be trapped into local optimal solutions  a weight and mutation particle swam optimization algorithm was proposed  in which the weight dynamically changes with a liner rule and the global best particle mutates per iteration to optimize the parameters of RBF-SVM. At last  a 220-bands hyperspectral remote sensing image of AVIRIS is taken as an experiment  which demonstrates that the method this paper proposed is an effective way to search the SVM parameters and is available in improving the performance of SVM classifiers. 2012 IEEE.  
Support Vector Machines with L-1 penalty for detecting gene-gene interactions 期刊论文  OAI收割
INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2012, 卷号: 6, 期号: 5, 页码: 463-470
作者:  
Shen, Yuanyuan;  Liu, Zhe;  Ott, Jurg
收藏  |  浏览/下载:28/0  |  提交时间:2015/09/09