中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [7]
长春光学精密机械与物... [3]
遥感与数字地球研究所 [3]
地理科学与资源研究所 [1]
计算技术研究所 [1]
中国科学院大学 [1]
更多
采集方式
OAI收割 [18]
iSwitch采集 [1]
内容类型
期刊论文 [9]
会议论文 [5]
学位论文 [4]
SCI/SSCI论文 [1]
发表日期
2019 [1]
2017 [1]
2015 [2]
2014 [2]
2013 [1]
2012 [1]
更多
学科主题
筛选
浏览/检索结果:
共19条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Infrared LSS-Target Detection Via Adaptive TCAIE-LGM Smoothing and Pixel-Based Background Subtraction
期刊论文
OAI收割
Photonic Sensors, 2019, 卷号: 9, 期号: 2, 页码: 179-188
作者:
Y.F.Wu
;
Y.J.Wang
;
P.X.Liu
;
H.Y.Luo
;
B.Y.Cheng
  |  
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2020/08/24
Small target detection,L0 smoothing,texture complexity,information,entropy,pixel-based adaptive segmentation,search,Instruments & Instrumentation,Optics
Ground-Based Cloud Detection Using Graph Model Built Upon Superpixels
期刊论文
OAI收割
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 卷号: 14, 期号: 5, 页码: 719-723
作者:
Shi, Cunzhao
;
Wang, Yu
;
Wang, Chunheng
;
Xiao, Baihua
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2017/09/12
Cloud Detection
Color
Graph Model (Gm)
Segmentation
Superpixel
Texture
Reliable Fusion of Stereo Matching and Depth Sensor for High Quality Dense Depth Maps
期刊论文
OAI收割
SENSORS, 2015, 卷号: 15, 期号: 8, 页码: 20894-20924
作者:
Liu, Jing
;
Li, Chunpeng
;
Fan, Xuefeng
;
Wang, Zhaoqi
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2019/12/13
stereo matching
depth sensor
multiscale pseudo-two-layer model
segmentation
texture constraint
fusion move
Staging of cervical cancer based on tumor heterogeneity characterized by texture features on F-18-FDG PET images
期刊论文
OAI收割
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 卷号: 60, 期号: 13, 页码: 5123-5139
作者:
Mu, Wei
;
Chen, Zhe
;
Liang, Ying
;
Shen, Wei
;
Yang, Feng
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2015/09/17
cervical cancer
PET/CT images
tumor segmentation
texture analysis
cancer staging
MCA aided geodesic active contours for image segmentation with textures
期刊论文
OAI收割
PATTERN RECOGNITION LETTERS, 2014, 卷号: 45, 页码: 235-243
作者:
Shan, Hao
;
He, Changtao
;
Wang, Na
收藏
  |  
浏览/下载:43/0
  |  
提交时间:2015/06/09
Morphological component analysis\diversity
Image segmentation
Sparse representation
Curvelets
Geodesic active contours
Texture separation
LS-SVM-based image segmentation using pixel color-texture descriptors
期刊论文
OAI收割
PATTERN ANALYSIS AND APPLICATIONS, 2014, 卷号: 17, 期号: 2, 页码: 341-359
Yang, Hong-Ying
;
Zhang, Xian-Jin
;
Wang, Xiang-Yang
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2014/12/16
Image segmentation
Least squares support vector machine
Human visual attention
Local texture content
Arimoto entropy thresholding
Object-oriented segmentation of remote sensing image based on texture analysis
会议论文
OAI收割
Proceedings of the 2013 the International Conference on Remote Sensing, Environment and Transportation Engineering (Rsete 2013)
Wang, Yanhong
;
Cheng, Bo
;
Wang, Guizhou
;
You, Shucheng
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2014/12/07
Texture feature
High-resolution
Object-oriented
Image segmentation
STATISTICS
FUSING SPECTRAL AND TEXTURE INFORMATION FOR COLLAPSED BUILDINGS DETECTION IN AIRBORNE IMAGE
会议论文
OAI收割
2012 Ieee International Geoscience and Remote Sensing Symposium, New York
Li, L.
;
Zhang, B.
;
Wu, Y.
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2014/12/07
Collapsed Buildings
Airborne Images
Fusion
Texture
Spectral
DAMAGED BUILDINGS
SEGMENTATION
EARTHQUAKE
Aurora image segmentation by combining patch and texture thresholding
期刊论文
OAI收割
computer vision and image understanding, 2011, 卷号: 115, 期号: 3, 页码: 390-402
作者:
Gao, Xinbo
;
Fu, Rong
;
Li, Xuelong
;
Tao, Dacheng
;
Zhang, Beichen
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2015/10/20
Image segmentation
Feature extraction
LBP
Aurora
Texture segmentation
Otsu
Patch segmentation
TextureGrow: Object recognition and segmentation with limit prior knowledge (EI CONFERENCE)
会议论文
OAI收割
2011 International Conference on Network Computing and Information Security, NCIS 2011, May 14, 2011 - May 15, 2011, Guilin, Guangxi, China
Yao Z.
;
Han Q.
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2013/03/25
In this paper we present a new method for automatically visual recognition and semantic segmentation of photographs. Our automatically and rapidly approach based on Cellular Automation. Most of the analysis and description of recognition and segmentation are based on statistical or structural properties of this attribute
most of them need plenty of samples and prior Knowledge. In this paper
within a few evident samples (not too many)
we can first get the texture feature of each component and the structures
then select the approximately location randomly of the objects or patches of them
then we use the Cellular Automata algorithm to "grow" based on texture of different objects. The grow progress will stop When texture grow to the boundary. By this steps a new method is found which allow us use very few samples and low lever experience and get a rapidly and accuracy way to recognize and segment objects. We found that this new propose gives competitive results with limited experience and samples. 2011 IEEE.