中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共5条,第1-5条 帮助

条数/页: 排序方式:
The design of visible system for improving the measurement accuracy of imaging points 会议论文  OAI收割
Nanjing, PEOPLES R CHINA, 2017-10-24
作者:  
Shan, Qiu-sha;  Li, Gang;  Zeng, Luan;  Liu, Kai
  |  收藏  |  浏览/下载:36/0  |  提交时间:2018/07/05
Optical system design with high resolution and large field of view for the remote sensor (EI CONFERENCE) 会议论文  OAI收割
Chang J.; Weng Z.-C.; Wang Y.-T.; Cheng D.-W.; Jiang H.-L.
收藏  |  浏览/下载:29/0  |  提交时间:2013/03/25
In this paper  we are presenting a design method and its results for a space optical system with high resolution and wide field of view. This optical system can be used both in infrared and visible configurations. The designing of this system is based on an on-axis three-mirror anastigmatic (TMA) system. Here the on-axis concept allows wide field of view (FOV) enabling a diversity of designs available for the Multi-Object Spectrometer instruments optimized for low scattered and low emissive light. The available FOVs are upto 1 in both spectrum ranges  whereas the available aperture range is F/15 - F/10. The final optical system is a three-mirror telescope with two on-axis and one off-axis segment and its resolution is 0.3m or even lower. The distinguished feature of this design is that it maintains diffraction-limited image at wide wavelengths. The technological developments in the field of computer generated shaping of large-sized optical surface details with diffraction-limited imagery have opened new avenues towards the designing techniques. Such techniques permit us to expand these technological opportunities to fabricate the aspherical off-axis mirrors for a complex configuration.  
Design of a three field-of-view IR system (EI CONFERENCE) 会议论文  OAI收割
International Symposium on Photoelectronic Detection and Imaging, ISPDI 2007: Optoelectronic System Design, Manufacturing, and Testings, September 9, 2007 - September 12, 2007, Beijing, China
作者:  
Wang Y.;  Jiang H.;  Wang Y.;  Wang Y.;  Wang Y.
收藏  |  浏览/下载:26/0  |  提交时间:2013/03/25
Design of dual-FOV refractive/diffractive LWIR optical system (EI CONFERENCE) 会议论文  OAI收割
3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, AOMATT 2007: Advanced Optical Manufacturing Technologies, July 8, 2007 - July 12, 2007, Chengdu, China
作者:  
Wang L.-J.;  Zhang J.-P.;  Wang L.-J.;  Zhang X.;  Zhang X.
收藏  |  浏览/下载:33/0  |  提交时间:2013/03/25
An infrared-optical zoom system using binary element is proposed in this paper. The two main advantages of the zoom system introducing here are: bigger F-number and lower cost. The primary optical properties are: F/#=1  Second  Others  zoom ratio =1:4  binary element is used to correct the chromatical aberration by taking the advantage of negative dispersion characteristics and the cost of the system is lower than that of conventional ones with Zinc Selenide (Znse) material at the same level. In the binary element is rotational symmetric with one step which is easy to fabricate  in order to balance 5th spherical aberration  and dual field are 26.6 and 5.6respectively. Wider field of view is used for search and the smaller one is used for imaging details. This system uses un-cooled infrared detector with 320240 pixels and 45m pixel size. The F-number matches the sensitivity range of the detector array. Three aspects are considered during design process to make the system more satisfactory and more achievable. First  5th coma aberration and 5th astigmatic aberration  the manner of zoom is accomplished by exchanging tow lenses into the smaller field of view system layout. The lens exchange manner faces the requirement of simple system structure and good image quality in both focal points. It can also make the system more feasible in the alignment process than mechanical-zooming manner and optical-zooming manner  high-order asphere surfaces with 2th order to 10 th order are also hired in the system. Asphere surface is useful in compressing the system and improving optical system transmittance. This kind asphere surface is on industrial level featuring low cost and easy to fabricate. It is shown that good image quality can achieved by implementing five Germanium lenses and the transmittance of system is 72%. All aberrations are diffraction-limited  both spherical aberration and astigmatic aberration are corrected. When the field of view(FOV) is 26.6 and the focal length is 152mm  MTF at Nyquist frequency(11lp/mm) is great than 0.7. The spherical aberration is -0.0073. The coma aberration is 0.0978 and the astigmatic aberration is -0.013. When the field of view(FOV) is 5.6 and the focal length is 38mm  MTF at Nyquist frequency is great than 0.8 with spherical aberration -0.0046  the coma aberration 0.055 and astigmatic aberration 0.034.  
Design of infrared afocal zoom system (EI CONFERENCE) 会议论文  OAI收割
ICO20: Optical Design and Fabrication, August 21, 2005 - August 26, 2005, Changchun, China
作者:  
Wang Y.;  Jiang H.;  Wang Y.;  Wang Y.;  Wang Y.
收藏  |  浏览/下载:96/0  |  提交时间:2013/03/25
The design method and result are described for an infrared afocal zoom system. Its zoom ratio is 4  (2) Functions such as changing the field-of-view  and the corresponding field of view is 3-12. The working waveband is from 7.5m to 10.5m  focusing for objects at finite distances and athermalizing the system can be achieved by axially moving a single element in the system.  and its total length is required to be no more than 350mm. The final optical system consists of 7 elements  with aspheric surfaces and a diffractive optical element. It achieves diffraction-limited imaging at the far infrared waveband. Two conclusions can be drawn from the design. (1) Using diffractive optical elements in the design of an infrared optical system is an effective approach to control color aberrations  which eliminates the need to use exotic and expensive materials and helps to reduce the cost of the system