中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [1]
数学与系统科学研究院 [1]
自动化研究所 [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [4]
内容类型
会议论文 [2]
学位论文 [1]
期刊论文 [1]
发表日期
2023 [1]
2010 [1]
2008 [1]
2006 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Research on Rocket Engine Pose Measurement Technology Based on Monocular Vision
会议论文
OAI收割
Nanjing, China, 2023-06-16
作者:
Zhang, Haifeng
;
Wu, Jiaxin
;
Liu, Delian
;
Duan, Jiaxin
;
Guo, Gao
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2023/12/26
Rocket Engine
Centroid
Pose Measurement
Translation Vector
Identifying translation initiation sites in prokaryotes using support vector machine
期刊论文
OAI收割
JOURNAL OF THEORETICAL BIOLOGY, 2010, 卷号: 262, 期号: 4, 页码: 644-649
作者:
Gao, Tingting
;
Yang, Zhixia
;
Wang, Yong
;
Jing, Ling
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2018/07/30
Translation initiation site prediction
Support vector machine
Position specific weight matrix
基于多系统融合的统计机器翻译模型及系统研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2008
作者:
杜金华
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2015/09/02
统计机器翻译
双语语料库建设
多引擎翻译平台
相对位置向量重排序模型
MBR解码
混淆网络
多系统融合框架
statistical machine translation
bilingual corpus construction
multi-engine translation platform
relative position vector re-ordering model
MBR decoding
Confusion Network
system combination framework
A novel starting-point-independent wavelet coefficient shape matching (EI CONFERENCE)
会议论文
OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
Hu S.
;
Zhu M.
;
Wu C.
;
Song H.-J.
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2013/03/25
In many computer vision tasks
in order to improve the accuracy and robustness to the noise
wavelet analysis is preferred for the natural multi-resolution property. However
the wavelet representation suffers from the dependency of the starting point of the sampled contour. For overcoming the problem that the wavelet representation depends on the starting point of the sampled contour
the Zernike moments are introduced
and a novel Starting-Point-lndependent wavelet coefficient shape matching algorithm is presented. The proposed matching algorithm firstly gains the object contours
and give the translation and scale invariant object shape representation. The object shape representation is converted to the dyadic wavelet representation by the wavelet transform. And then calculate the Zernike moments of wavelet representation in different scales. With respect to property of rotation invariant of Zernike moments
consider the Zernike moments as the feature vector to calculate the dissimilarity between the object and template image
which overcoming the problem of dependency of starting point. The experimental results have proved the proposed algorithm to be efficient
precise
and robust.