中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [2]
长春光学精密机械与物... [1]
采集方式
OAI收割 [3]
内容类型
期刊论文 [2]
会议论文 [1]
发表日期
2020 [2]
2011 [1]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
The spatial statistic trinity: A generic framework for spatial sampling and inference
期刊论文
OAI收割
ENVIRONMENTAL MODELLING & SOFTWARE, 2020, 卷号: 134, 页码: 11
作者:
Wang, Jinfeng
;
Gao, Bingbo
;
Stein, Alfred
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2021/03/16
Population and sample
Spatial autocorrelation (SAC)
Spatial stratified heterogeneity (SSH)
Variable and random variable
Spatial statistic trinity (SST)
The spatial statistic trinity: A generic framework for spatial sampling and inference
期刊论文
OAI收割
ENVIRONMENTAL MODELLING & SOFTWARE, 2020, 卷号: 134, 页码: 11
作者:
Wang, Jinfeng
;
Gao, Bingbo
;
Stein, Alfred
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2021/03/16
Population and sample
Spatial autocorrelation (SAC)
Spatial stratified heterogeneity (SSH)
Variable and random variable
Spatial statistic trinity (SST)
Structure buckling reliability analysis of supercavitating projectile (EI CONFERENCE)
会议论文
OAI收割
2nd Annual Conference on Electrical and Control Engineering, ICECE 2011, September 16, 2011 - September 18, 2011, Yichang, China
作者:
Zhou L.
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2013/03/25
Because the underwater velocity of supercavitating projectile is very high
its structure undergo high longitudinal force. It is necessary to perform structure buckling reliability analysis because the randomicity of structural own parameters and flow parameters should be considered. Critical buckling load of supercavitating projectile is calculated by Galerkin method. The partial matrixes of critical buckling load implicit function to each random variable are deduced
and structural buckling reliability index is calculated by limit step length iteration method. Numerical results show that the critical buckling load and structural buckling reliability index increase with the increase of the ratio of base diameter to cavitator diameter. And structural buckling reliability index increase with the decrease of velocity coefficient. 2011 IEEE.