中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
武汉岩土力学研究所 [2]
长春光学精密机械与物... [1]
自动化研究所 [1]
沈阳自动化研究所 [1]
采集方式
OAI收割 [5]
内容类型
期刊论文 [3]
会议论文 [2]
发表日期
2022 [1]
2020 [1]
2019 [1]
2012 [1]
2005 [1]
学科主题
筛选
浏览/检索结果:
共5条,第1-5条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Learning Skill Characteristics From Manipulations
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 页码: 15
作者:
Zhou, Xiao-Hu
;
Xie, Xiao-Liang
;
Liu, Shi-Qi
  |  
收藏
  |  
浏览/下载:43/0
  |  
提交时间:2022/06/10
Surgery
Sensors
In vivo
Task analysis
Arteries
Measurement
Sensor phenomena and characterization
Ensemble learning
in vivo porcine studies
percutaneous coronary intervention
skill characteristics
wavelet packet decomposition (WPD)
钙质砂地基含水率对爆破振动特性影响分析
期刊论文
OAI收割
爆破, 2020, 卷号: 37, 期号: 4, 页码: 31
作者:
钟冬望
;
杜泉
;
孟庆山
;
雷学文
;
何理
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2021/05/25
calcareous sand
vibration velocity
Sadovsky formula
watery state
wavelet packet energy analysis
钙质砂
振动速度
萨道夫斯基公式
含水状态
小波包能量分析
A novel bearing fault diagnosis method based on principal component analysis and BP neural network
会议论文
OAI收割
Changsha, China, November 1-3, 2019
作者:
Sun Y(孙越)
;
Xu AD(徐皑冬)
;
Wang K(王锴)
;
Han XJ(韩晓佳)
;
Guo HF(郭海丰)
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2020/06/21
Fault diagnosis
rolling bearing
principal component analysis
wavelet packet energy
high dimensional features
Optimization for the Prediction of Waveform and the Estimation of Peak Particle Velocity of Explosive Vibration
期刊论文
OAI收割
DISASTER ADVANCES, 2012, 卷号: 5, 期号: 4, 页码: 502-508
作者:
Chen Shihai
;
Zhang Qiuhua
;
Yan Yongfeng
;
Li Haibo
;
Lv Yanxin
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2018/06/05
Peak Particle Velocity
Waveform Prediction
Modified Sadaovsk Formula
Explosive Vibration
Wavelet Packet Analysis
AE signal processing and DSP implementation based on wavelet packet analysis (EI CONFERENCE)
会议论文
OAI收割
ICMIT 2005: Information Systems and Signal Processing, September 20, 2005 - September 23, 2005, Changchun, China
作者:
Zhao J.
;
Wang K.
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2013/03/25
To improve the accuracy of AE (Acoustic Emission) testing
the wavelet packet analysis was introduced to process the AE signals. Extraction of the fault characteristic information would be influenced greatly if the faulted AE signal was not effectively denoised. Based on discussing the fast searching algorithm of BWPB (Best Wavelet Packet Basis) adopting Shannon entropy
a new method based on BWPB was presented to denoise the AE signal from the faulted composite plate. Analyzing was performed on the denoised signal and the fault characteristic information was exacted. To improve the real-time performance of the wavelet packet analysis algorithm
it was performed on the DSP (Digital Signal Processing) chip TMS320VC5409. The experimental results show that the algorithm can not only reduce the noise by 10dB but also effectively extract the faulted characteristics information from the AE signal.