中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [3]
长春光学精密机械与物... [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [3]
会议论文 [1]
发表日期
2017 [3]
2011 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Evaluation of intensive urban land use based on an artificial neural network model: A case study of Nanjing City, China
期刊论文
OAI收割
CHINESE GEOGRAPHICAL SCIENCE, 2017, 卷号: 27, 期号: 5, 页码: 735-746
作者:
Qiao Weifeng
;
Gao Junbo
;
Liu Yansui
;
Qin Yueheng
;
Lu Cheng
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2019/09/25
urban land
intensive use
functional area
artificial neural network (ANN) model
Nanjing City
Evaluation of intensive urban land use based on an artificial neural network model: A case study of Nanjing City, China
期刊论文
OAI收割
CHINESE GEOGRAPHICAL SCIENCE, 2017, 卷号: 27, 期号: 5, 页码: 735-746
作者:
Qiao Weifeng
;
Gao Junbo
;
Liu Yansui
;
Qin Yueheng
;
Lu Cheng
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2019/09/25
urban land
intensive use
functional area
artificial neural network (ANN) model
Nanjing City
Evaluation of intensive urban land use based on an artificial neural network model: A case study of Nanjing City, China
期刊论文
OAI收割
CHINESE GEOGRAPHICAL SCIENCE, 2017, 卷号: 27, 期号: 5, 页码: 735-746
作者:
Qiao Weifeng
;
Gao Junbo
;
Liu Yansui
;
Qin Yueheng
;
Lu Cheng
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2019/09/25
urban land
intensive use
functional area
artificial neural network (ANN) model
Nanjing City
Double inverted pendulum control based on three-loop PID and improved BP neural network (EI CONFERENCE)
会议论文
OAI收割
2011 2nd International Conference on Digital Manufacturing and Automation, ICDMA 2011, August 5, 2011 - August 7, 2011, Zhangjiajie, Hunan, China
作者:
Fan Y.
收藏
  |  
浏览/下载:37/0
  |  
提交时间:2013/03/25
To deal with the defects of BP neural networks used in balance control of inverted pendulum
such as longer train time and converging in partial minimum
this article reaLizes the control of double inverted pendulum with improved BP algorithm of artificial neural networks(ANN)
builds up a training model of test simulation and the BP network is 6-10-1 structure. Tansig function is used in hidden layer and PureLin function is used in output layer
LM is used in training algorithm. The training data is acquried by three-loop PID algorithm. The model is learned and trained with Matlab calculating software
and the simuLink simulation experiment results prove that improved BP algorithm for inverted pendulum control has higher precision
better astringency and lower calculation. This algorithm has wide appLication on nonLinear control and robust control field in particular. 2011 IEEE.