中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [2]
长春光学精密机械与物... [1]
沈阳自动化研究所 [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [3]
会议论文 [1]
发表日期
2022 [1]
2020 [1]
2019 [1]
2012 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Self-adaptive Bat Algorithm With Genetic Operations
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2022, 卷号: 9, 期号: 7, 页码: 1284-1294
作者:
Jing Bi
;
Haitao Yuan
;
Jiahui Zhai
;
MengChu Zhou
;
H. Vincent Poor
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2022/06/27
Bat algorithm (BA)
genetic algorithm (GA)
hybrid algorithm
learning mechanism
meta-heuristic optimization algorithms
A study of flexible flow shop scheduling problem with variable processing times based on improved bat algorithm
期刊论文
OAI收割
International Journal of Simulation and Process Modelling, 2020, 卷号: 15, 期号: 3, 页码: 245-254
作者:
Bian, Jianyong
;
Yang LY(杨丽英)
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2020/06/21
flexible flow shop
bat algorithm
BA
variable processing time
Hamming distance
adaptive position update
A Novel Bat Algorithm with Multiple Strategies Coupling for Numerical Optimization
期刊论文
OAI收割
MATHEMATICS, 2019, 卷号: 7, 期号: 2, 页码: 17
作者:
Wang, Yechuang
;
Wang, Penghong
;
Zhang, Jiangjiang
;
Cui, Zhihua
;
Cai, Xingjuan
  |  
收藏
  |  
浏览/下载:97/0
  |  
提交时间:2019/07/12
bat algorithm (BA)
bat algorithm with multiple strategy coupling (mixBA)
CEC2013 benchmarks
Wilcoxon test
Friedman test
Image matching using a bat algorithm with mutation (EI CONFERENCE)
会议论文
OAI收割
2012 International Conference on Mechatronic Systems and Automation Systems, MSAS 2012, July 21, 2012 - July 21, 2012, Wuhan, China
作者:
Zhang J.
;
Wang G.
;
Zhang J.
;
Zhang J.
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2013/03/25
Due to shortcoming of traditional image matching for computing the fitness for every pixel in the searching space
a new bat algorithm with mutation (BAM) is proposed to solve image matching problem
and a modification is applied to mutate between bats during the process of the new solutions updating. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for this improved meta-heuristic approach BAM is also presented. To prove the performance of this proposed meta-heuristic method
BAM is compared with BA and other population-based optimization methods
DE and SGA. The experiment shows that the proposed approach is more effective and feasible in image matching than the other model. (2012) Trans Tech Publications
Switzerland.