中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
金属研究所 [4]
自动化研究所 [4]
计算技术研究所 [1]
长春光学精密机械与物... [1]
上海神经科学研究所 [1]
新疆理化技术研究所 [1]
更多
采集方式
OAI收割 [15]
内容类型
期刊论文 [11]
会议论文 [2]
学位论文 [2]
发表日期
2022 [1]
2021 [2]
2020 [1]
2018 [1]
2017 [1]
2016 [1]
更多
学科主题
Neuroscien... [1]
网络心理学 [1]
筛选
浏览/检索结果:
共15条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Driving EEG based multilayer dynamic brain network analysis for steering process
期刊论文
OAI收割
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 卷号: 207, 页码: 17
作者:
Chang, Wenwen
;
Meng, Weiliang
;
Yan, Guanghui
;
Zhang, Bingtao
;
Luo, Hao
  |  
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2022/09/19
Multi -layer Networks
Functional Connectivity
Electroencephalogram (EEG)
Driving Intention
Feature Extraction
Driving Behavior
Pedestrian Trajectory Prediction Based on Deep Convolutional LSTM Network
期刊论文
OAI收割
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 卷号: 22, 期号: 6, 页码: 3285-3302
作者:
Song, Xiao
;
Chen, Kai
;
Li, Xu
;
Sun, Jinghan
;
Hou, Baocun
  |  
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2021/08/15
Trajectory
Predictive models
Neural networks
Force
Mathematical model
Feature extraction
Tensors
Pedestrian behavior
convolution
long short-term memory
neural network
Room temperature tensile deformation behavior of a Ni-based superalloy with high W content
期刊论文
OAI收割
CHINA FOUNDRY, 2021, 卷号: 18, 期号: 3, 页码: 192-198
作者:
Shu, De-long
;
Xie, Jun
;
Zhang, Feng-jiang
;
Hou, Gui-chen
;
Wang, Zhen-jiang
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2021/10/15
Ni-based superalloy
high W content
microstructure
tensile behavior
deformation feature
TG146
1(+)5
A
Prediction of Drug-Target Interactions From Multi-Molecular Network Based on Deep Walk Embedding Model
期刊论文
OAI收割
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 卷号: 8, 期号: 6, 页码: 1-9
作者:
Chen, ZH (Chen, Zhan-Heng)[ 1,2 ]
;
You, ZH (You, Zhu-Hong)[ 1,2 ]
;
Guo, ZH (Guo, Zhen-Hao)[ 1,2 ]
;
Yi, HC (Yi, Hai-Cheng)[ 1,2 ]
;
Luo, GX (Luo, Gong-Xu)[ 1,2 ]
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2020/09/09
drug-target interactions
molecular association network
attribute feature
behavior feature
random forest
Perceptually Aware Image Retargeting for Mobile Devices
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 卷号: 27, 期号: 5, 页码: 2301-2313
作者:
Zhou, Yinzuo
;
Zhang, Luming
;
Zhang, Chao
;
Li, Ping
;
Li, Xuelong
  |  
收藏
  |  
浏览/下载:39/0
  |  
提交时间:2018/12/11
Mobile Platform
Retarget
Perceptual
Gaze Behavior
Deep Feature
Probabilistic Model
Exploring Coherent Motion Patterns via Structured Trajectory Learning for Crowd Mood Modeling
期刊论文
OAI收割
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 卷号: 27, 期号: 3, 页码: 635-648
作者:
Zhang, Yanhao
;
Qin, Lei
;
Ji, Rongrong
;
Zhao, Sicheng
;
Huang, Qingming
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2019/12/12
Coherent motion pattern
crowd behavior analysis
emotional motion feature
structured trajectory learning (STL)
Deep learning for constructing microblog behavior representation to identify social media user’s personality
期刊论文
OAI收割
PeerJ Computer Science, 2016, 期号: 2, 页码: e81
作者:
Xiaoqian Liu
;
Tingshao Zhu
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2017/01/16
Personality prediction
Social media behavior
Deep learning
Feature learning
INFLUENCE OF TEMPERATURE ON TENSILE BEHAVIORS OF K416B Ni-BASED SUPERALLOY WITH HIGH W CONTENT
期刊论文
OAI收割
ACTA METALLURGICA SINICA, 2015, 卷号: 51, 期号: 8, 页码: 943-950
作者:
Xie Jun
;
Yu Jinjiang
;
Sun Xiaofeng
;
Jin Tao
;
Yang Yanhong
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2021/02/02
K416B Ni-based superalloy
tensile behavior
deformation feature
fracture mechanism
INFLUENCE OF TEMPERATURE ON TENSILE BEHAVIORS OF K416B Ni-BASED SUPERALLOY WITH HIGH W CONTENT
期刊论文
OAI收割
ACTA METALLURGICA SINICA, 2015, 卷号: 51, 期号: 8, 页码: 943-950
作者:
Xie Jun
;
Yu Jinjiang
;
Sun Xiaofeng
;
Jin Tao
;
Yang Yanhong
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2021/02/02
K416B Ni-based superalloy
tensile behavior
deformation feature
fracture mechanism
Approach for detecting crowd panic behavior based on fluid kinematic features and entropy (EI CONFERENCE)
会议论文
OAI收割
International Workshop on Advanced Computational Intelligence and Intelligent Informatics, IWACIII 2011, November 19, 2011 - November 23, 2011, Suzhou, China
作者:
Li Y.
;
Li Y.
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2013/03/25
Crowd panic behavior detection is an important task in video analysis and event recognition
whose purpose is to detect when the panic behavior happened and alarming the abnormal event timely. In this paper
the crowd is regard as a fluid
and the crowd motion is described by four fluid kinematic features (divergence
vorticity
gradient tensor invariant and rotation tensor invariant). To discriminate the panic event from normal crowd behavior
an information entropy is calculated as a high level feature based on the fluid kinematic features. Experimental results show that the entropy raised dramatically once a panic event happened.