中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
西安光学精密机械研究... [2]
长春光学精密机械与物... [1]
自动化研究所 [1]
采集方式
OAI收割 [4]
_filter
_filter
_filter
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
作者升序
作者降序
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
Interaction semantic segmentation network via progressive supervised learning
期刊论文
OAI收割
MACHINE VISION AND APPLICATIONS, 2024, 卷号: 35, 期号: 2
作者:
Zhao, Ruini
;
Xie, Meilin
;
Feng, Xubin
;
Guo, Min
;
Su, Xiuqin
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2024/03/15
Semantic segmentation
Boundary refinement
Progressive supervised learning
Information interaction
Unsupervised Transformer Boundary Autoencoder Network for Hyperspectral Image Change Detection
期刊论文
OAI收割
REMOTE SENSING, 2023, 卷号: 15, 期号: 7
作者:
Liu, Song
;
Li, Haiwei
;
Wang, Feifei
;
Chen, Junyu
;
Zhang, Geng
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2023/05/06
autoencoder
boundary information
change detection
hyperspectral image
unsupervised
视频中的人体跟踪和行为识别方法研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2012
作者:
王恒
收藏
  |  
浏览/下载:98/0
  |  
提交时间:2015/09/02
背景信息
半监督鉴别跟踪
行为识别
稠密轨迹
运动边界
特征融合
background information
semi-supervised discriminant tracking
action recognition
dense trajectories
motion boundary
feature combination
Partial occlusion detection of object boundary (EI CONFERENCE)
会议论文
OAI收割
2009 IEEE Intrumentation and Measurement Technology Conference, I2MTC 2009, May 5, 2009 - May 7, 2009, Singapore, Singapore
作者:
Zhang J.
;
Zhang K.
;
Zhang K.
;
Zhang K.
;
Zhang K.
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2013/03/25
Partial occlusion is a difficult problem in computer vision since whether the object is changed or occluded is ambiguous
especially when distinguishing it only from the object boundary. In this paper
we proposed a novel idea to solve this problem by taking shape matching as a morphing processing. A mass-spring model is constructed from the point set which is sampled from a template (or reference) object boundary by moving it to a target object which is deformed and/or occluded. From the morphing processing
sufficient information can be obtained and an accurate detection of occlusion is performed. By using of the proposed method
the application scope of occlusion detection is expanded while other method cannot be performed which need color
texture
or motion information. The experiments performed on synthetic and real world images proved the satisfactory performance of the proposed method. 2009 IEEE.