中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
计算技术研究所 [1]
理论物理研究所 [1]
数学与系统科学研究院 [1]
遥感与数字地球研究所 [1]
中国科学院大学 [1]
采集方式
OAI收割 [4]
iSwitch采集 [1]
内容类型
期刊论文 [4]
会议论文 [1]
发表日期
2016 [1]
2015 [1]
2010 [2]
2008 [1]
学科主题
Mechanics [1]
Physics [1]
筛选
浏览/检索结果:
共5条,第1-5条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A corrected normalized mutual information for performance evaluation of community detection
期刊论文
iSwitch采集
Journal of statistical mechanics-theory and experiment, 2016, 页码: 20
作者:
Lai, Darong
;
Nardini, Christine
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2019/05/09
Clustering techniques
Random graphs
Networks
Evaluating accuracy of community detection using the relative normalized mutual information
期刊论文
OAI收割
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015, 期号: 0, 页码: P11006
作者:
Zhang, P
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2016/11/21
random graphs
networks
clustering techniques
Weighted tunable clustering in local-world networks with increment behavior
期刊论文
OAI收割
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010, 页码: 20
作者:
Ma, Ying-Hong
;
Li, Huijia
;
Zhang, Xiao-Dong
  |  
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2018/07/30
growth processes
clustering techniques
Spectral methods for the detection of network community structure: a comparative analysis
期刊论文
OAI收割
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010, 页码: 13
作者:
Shen, Hua-Wei
;
Cheng, Xue-Qi
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2019/12/16
analysis of algorithms
random graphs
networks
clustering techniques
A novel spatial clustering algorithm based on Delaunay triangulation
会议论文
OAI收割
International Conference on Earth Observation Data Processing and Analysis, ICEODPA,, Wuhan, China, December 28, 2008 - December 30,2008
Yang, Xiankun
;
Cui, Weihong
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2014/12/07
Exploratory data analysis is increasingly more necessary as larger spatial data is managed in electro-magnetic media. Spatial clustering is one of the very important spatial data mining techniques. So far
a lot of spatial clustering algorithms have been proposed. In this paper we propose a robust spatial clustering algorithm named SCABDT (Spatial Clustering Algorithm Based on Delaunay Triangulation). SCABDT demonstrates important advantages over the previous works. First
it discovers even arbitrary shape of cluster distribution. Second
in order to execute SCABDT
we do not need to know any priori nature of distribution. Third
like DBSCAN
Experiments show that SCABDT does not require so much CPU processing time. Finally it handles efficiently outliers. 2008 SPIE.