中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [3]
计算技术研究所 [2]
长春光学精密机械与物... [2]
采集方式
OAI收割 [7]
内容类型
期刊论文 [5]
会议论文 [2]
发表日期
2023 [1]
2022 [2]
2018 [1]
2013 [1]
2012 [1]
2010 [1]
更多
学科主题
筛选
浏览/检索结果:
共7条,第1-7条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
IVP: An Intelligent Video Processing Architecture for Video Streaming
期刊论文
OAI收割
IEEE TRANSACTIONS ON COMPUTERS, 2023, 卷号: 72, 期号: 1, 页码: 264-277
作者:
Gao, Chengsi
;
Wang, Ying
;
Han, Yinhe
;
Chen, Weiwei
;
Zhang, Lei
  |  
收藏
  |  
浏览/下载:13/0
  |  
提交时间:2023/07/12
Video enhancement
compressed video
DNN
approximate computing
optical flow
accelerator
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement
期刊论文
OAI收割
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 卷号: 32, 期号: 7, 页码: 4138-4149
作者:
Zhao, Hengrun
;
Zheng, Bolun
;
Yuan, Shanxin
;
Zhang, Hua
;
Yan, Chenggang
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2022/12/07
Image coding
Quantization (signal)
Streaming media
Bit rate
Image restoration
Transform coding
Video recording
Quality enhancement
CBR compressed video
dual-domain restoration
Detecting Compressed Deepfake Videos in Social Networks Using Frame-Temporality Two-Stream Convolutional Network
期刊论文
OAI收割
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 卷号: 32, 期号: 3, 页码: 1089-1102
作者:
Hu, Juan
;
Liao, Xin
;
Wang, Wei
;
Qin, Zheng
  |  
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2022/06/06
Videos
Information integrity
Feature extraction
Streaming media
Faces
Forensics
Social networking (online)
Video forensics
compressed Deepfake videos
frame-level stream
temporality-level stream
A video error concealment method using data hiding based on compressed sensing over lossy channel
期刊论文
OAI收割
TELECOMMUNICATION SYSTEMS, 2018, 卷号: 68, 期号: 2, 页码: 337-349
作者:
Chen, Yanli
;
Wang, Hongxia
;
Wu, Hanzhou
;
Sun, Xingming
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2019/12/16
Video error concealment
Data hiding
Compressed sensing
Lossy channel
Surveillance video synopsis in the compressed domain for fast video browsing
期刊论文
OAI收割
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2013, 卷号: 24, 期号: 8, 页码: 1431-1442
作者:
Wang, Shi-zheng
;
Wang, Zhong-yuan
;
Hu, Rui-min
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2015/09/23
Surveillance video
Compressed domain
Video synopsis
Video labeling
Scalable browsing
Fast browsing
Background modeling
Intelligent video
A simple and fast moving object segmentation based on H.264 compressed domain information (EI CONFERENCE)
会议论文
OAI收割
4th International Conference on Computational and Information Sciences, ICCIS 2012, August 17, 2012 - August 19, 2012, Chongqing, China
作者:
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2013/03/25
The paper presents a simple and fast approach for moving object segmentation based on H.264 compressed domain information for the application of indoor video surveillance with static camera. Due to the characteristics of indoor video surveillance
the proposed method of segmentation avoids complicated background model like Gaussian Mixture background model. On the contrary
it chooses some simple information like the type of Macroblock
etc.. Experimental results of several specific H.264 compressed video sequences demonstrate the good segmentation quality of the proposed approach. 2012 IEEE.
An intelligent video surveillance system (EI CONFERENCE)
会议论文
OAI收割
2010 International Conference on E-Product E-Service and E-Entertainment, ICEEE2010, November 7, 2010 - November 9, 2010, Henan, China
Gao S.
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2013/03/25
This paper presents an intelligent video surveillance system. The system is composed of one or more nodes flexibly according to the application scenarios such as private properties
banks and museums. Each node is an autonomous vision-based device capable to perform intelligent tasks. It is able to digitize and compress the acquired analog video signals in MPEG-4 standard and then transmit the compressed video stream to the control center. At the same time
the node makes use of a statistical approach for real-time detecting moving object and online alarm generation to enable a single human operator to monitor activities over a complex area using a distributed network of active video sensors. The node is implemented on a platform with high performance to ensure that the algorithm is able to run in real-time. Applications demonstrate that the intelligent system has an excellent performance in many scenarios to help people make decisions more accurately and rapidly. 2010 IEEE.