中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共7条,第1-7条 帮助

条数/页: 排序方式:
IVP: An Intelligent Video Processing Architecture for Video Streaming 期刊论文  OAI收割
IEEE TRANSACTIONS ON COMPUTERS, 2023, 卷号: 72, 期号: 1, 页码: 264-277
作者:  
Gao, Chengsi;  Wang, Ying;  Han, Yinhe;  Chen, Weiwei;  Zhang, Lei
  |  收藏  |  浏览/下载:13/0  |  提交时间:2023/07/12
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement 期刊论文  OAI收割
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 卷号: 32, 期号: 7, 页码: 4138-4149
作者:  
Zhao, Hengrun;  Zheng, Bolun;  Yuan, Shanxin;  Zhang, Hua;  Yan, Chenggang
  |  收藏  |  浏览/下载:35/0  |  提交时间:2022/12/07
Detecting Compressed Deepfake Videos in Social Networks Using Frame-Temporality Two-Stream Convolutional Network 期刊论文  OAI收割
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 卷号: 32, 期号: 3, 页码: 1089-1102
作者:  
Hu, Juan;  Liao, Xin;  Wang, Wei;  Qin, Zheng
  |  收藏  |  浏览/下载:42/0  |  提交时间:2022/06/06
A video error concealment method using data hiding based on compressed sensing over lossy channel 期刊论文  OAI收割
TELECOMMUNICATION SYSTEMS, 2018, 卷号: 68, 期号: 2, 页码: 337-349
作者:  
Chen, Yanli;  Wang, Hongxia;  Wu, Hanzhou;  Sun, Xingming
  |  收藏  |  浏览/下载:20/0  |  提交时间:2019/12/16
Surveillance video synopsis in the compressed domain for fast video browsing 期刊论文  OAI收割
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2013, 卷号: 24, 期号: 8, 页码: 1431-1442
作者:  
Wang, Shi-zheng;  Wang, Zhong-yuan;  Hu, Rui-min
收藏  |  浏览/下载:26/0  |  提交时间:2015/09/23
A simple and fast moving object segmentation based on H.264 compressed domain information (EI CONFERENCE) 会议论文  OAI收割
4th International Conference on Computational and Information Sciences, ICCIS 2012, August 17, 2012 - August 19, 2012, Chongqing, China
作者:  
收藏  |  浏览/下载:14/0  |  提交时间:2013/03/25
An intelligent video surveillance system (EI CONFERENCE) 会议论文  OAI收割
2010 International Conference on E-Product E-Service and E-Entertainment, ICEEE2010, November 7, 2010 - November 9, 2010, Henan, China
Gao S.
收藏  |  浏览/下载:15/0  |  提交时间:2013/03/25
This paper presents an intelligent video surveillance system. The system is composed of one or more nodes flexibly according to the application scenarios such as private properties  banks and museums. Each node is an autonomous vision-based device capable to perform intelligent tasks. It is able to digitize and compress the acquired analog video signals in MPEG-4 standard and then transmit the compressed video stream to the control center. At the same time  the node makes use of a statistical approach for real-time detecting moving object and online alarm generation to enable a single human operator to monitor activities over a complex area using a distributed network of active video sensors. The node is implemented on a platform with high performance to ensure that the algorithm is able to run in real-time. Applications demonstrate that the intelligent system has an excellent performance in many scenarios to help people make decisions more accurately and rapidly. 2010 IEEE.