中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
计算技术研究所 [1]
长春光学精密机械与物... [1]
软件研究所 [1]
采集方式
OAI收割 [3]
内容类型
会议论文 [2]
期刊论文 [1]
发表日期
2011 [1]
2007 [1]
2006 [1]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Computation of Level-Set Components From Level Lines
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 卷号: 20, 期号: 10, 页码: 2722-2729
作者:
Song, Yuqing
;
Chen, Xilin
;
Ma, Zhiguo
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2019/12/16
Contour tree
level line tree
level set
image representation
a new invariant descriptor for shape representation and recognition
会议论文
OAI收割
IEEE Symposium on Computational Intelligence in Image and Signal Processing, Honolulu, HI, APR 01-05,
Wang Xiying
;
Dai Guozhong
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2011/06/29
contour representation
invariant descriptor
polygon Fourier descriptor
polygonal approximation
shape recognition
shape representation
static gesture recognition
Fourier transforms
feature extraction
gesture recognition
image representation
object recognit
A novel starting-point-independent wavelet coefficient shape matching (EI CONFERENCE)
会议论文
OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
Hu S.
;
Zhu M.
;
Wu C.
;
Song H.-J.
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2013/03/25
In many computer vision tasks
in order to improve the accuracy and robustness to the noise
wavelet analysis is preferred for the natural multi-resolution property. However
the wavelet representation suffers from the dependency of the starting point of the sampled contour. For overcoming the problem that the wavelet representation depends on the starting point of the sampled contour
the Zernike moments are introduced
and a novel Starting-Point-lndependent wavelet coefficient shape matching algorithm is presented. The proposed matching algorithm firstly gains the object contours
and give the translation and scale invariant object shape representation. The object shape representation is converted to the dyadic wavelet representation by the wavelet transform. And then calculate the Zernike moments of wavelet representation in different scales. With respect to property of rotation invariant of Zernike moments
consider the Zernike moments as the feature vector to calculate the dissimilarity between the object and template image
which overcoming the problem of dependency of starting point. The experimental results have proved the proposed algorithm to be efficient
precise
and robust.