中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共6条,第1-6条 帮助

条数/页: 排序方式:
Deep Video Dehazing with Semantic Segmentation 期刊论文  OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 卷号: 99, 期号: 99, 页码: 1-13
作者:  
Wenqi REN;  Jingang ZHANG;  Xiangyu XU;  Lin MA;  Xiaocun CAO
  |  收藏  |  浏览/下载:103/0  |  提交时间:2018/10/09
Learning Tone Mapping Function for Dehazing 期刊论文  OAI收割
cognitive computation, 2017, 卷号: 9, 期号: 1, 页码: 95-114
作者:  
Lian, Xuhang;  Pang, Yanwei;  He, Yuqing
收藏  |  浏览/下载:65/0  |  提交时间:2017/05/02
A fast algorithm for image defogging 期刊论文  OAI收割
Proceedings of SPIE: 8th International Symposium on Advanced Optical Manufacturing and Testing Technology: Optical Test, Measurement Technology, and Equipment, 2016, 卷号: 9684, 页码: 968427
作者:  
Wang, Xingyu;  Guo, Shuai;  Wang, Hui;  Su, Haibing
  |  收藏  |  浏览/下载:17/0  |  提交时间:2018/06/14
Direct Growth of Ultrafast transparent Single-layer Graphene Defoggers 期刊论文  OAI收割
SMALL, 2015, 卷号: 11, 期号: 15, 页码: 1840-1846
-
收藏  |  浏览/下载:275/0  |  提交时间:2016/05/16
视频图像质量增强技术研究 学位论文  OAI收割
工学硕士, 中国科学院自动化研究所: 中国科学院研究生院, 2010
姚波
收藏  |  浏览/下载:82/0  |  提交时间:2015/09/02
Real-time defogging processing of aerial images (EI CONFERENCE) 会议论文  OAI收割
2010 6th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2010, September 23, 2010 - September 25, 2010, Chengdu, China
作者:  
Liu G.
收藏  |  浏览/下载:37/0  |  提交时间:2013/03/25
A real-time image defogging processing method based on FPGA is proposed to increase low-contrast of the aerial images in foggy vision conditions. According to the high similarity of the contiguous frame histogram in video image  the histogram equalization algorithm is improved to enhance the image contrast. The median filter algorithm is used to eliminate the noise of the image. The experimental results demonstrate that the method can efficiently enhance the contrast  strengthen the detail and clarify definition for the fog-degraded aerial images. The visibility limit of the images has been increased to a time above. Simultaneously the method satisfies the real-time processing requirement of aerial video images  which has direct applications to the problem of poor visibility conditions. 2010 IEEE.