中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [2]
重庆绿色智能技术研究... [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [4]
发表日期
2023 [1]
2022 [1]
2021 [1]
2020 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Real-time continuous detection and recognition of dynamic hand gestures in untrimmed sequences based on end-to-end architecture with 3D DenseNet and LSTM
期刊论文
OAI收割
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 页码: 38
作者:
Lu, Zhi
;
Qin, Shiyin
;
Lv, Pin
;
Sun, Liguo
;
Tang, Bo
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2023/11/17
Continuous detection
Gesture recognition
Long short-term memory
3D densely connected convolutional networks
Connectionist temporal classification
Canonical correlation analysis
CNDesc: Cross Normalization for Local Descriptors Learning
期刊论文
OAI收割
IEEE Transactions on Multimedia, 2022, 卷号: xx, 期号: xx, 页码: xx
作者:
Changwei Wang
;
Rongtao Xu
;
Shibiao Xu
;
Weiliang Meng
;
Xiaopeng Zhang
  |  
收藏
  |  
浏览/下载:45/0
  |  
提交时间:2022/04/15
Local descriptors
cross normalization
densely connected backbone
distribution consistent loss
Bio-Inspired Representation Learning for Visual Attention Prediction
期刊论文
OAI收割
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 卷号: 51, 期号: 7, 页码: 3562-3575
作者:
Yuan, Yuan
;
Ning, Hailong
;
Lu, Xiaoqiang
  |  
收藏
  |  
浏览/下载:106/0
  |  
提交时间:2021/07/12
Bio-inspired
center-bias prior
contrast features
densely connected
reduction-attention
semantic features
visual attention prediction (VAP)
A better method for the dynamic, precise estimating of blood/haemoglobin loss based on deep learning of artificial intelligence
期刊论文
OAI收割
ANNALS OF TRANSLATIONAL MEDICINE, 2020, 卷号: 8, 期号: 19, 页码: 14
作者:
Li, Yu-Jie
;
Zhang, Li-Ge
;
Zhi, Hong-Yu
;
Zhong, Kun-Hua
;
He, Wen-Quan
  |  
收藏
  |  
浏览/下载:62/0
  |  
提交时间:2021/02/24
Intra-operative blood loss
intra-operative haemoglobin loss
densely connected convolutional networks
feature extraction technology