中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [2]
长春光学精密机械与物... [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [4]
内容类型
会议论文 [2]
期刊论文 [2]
发表日期
2021 [1]
2019 [1]
2014 [1]
2010 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
Audio-Visual Speech Separation with Visual Features Enhanced by Adversarial Training
会议论文
OAI收割
线上会议, 2021-7-18
作者:
Zhang Peng
;
Xu Jiaming
;
Shi Jing
;
Hao Yunzhe
;
Qin Lei
  |  
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2021/06/21
audio-visual speech separation
robust
adversarial training method
time-domain approach
Robust Space-Frequency Joint Representation for Remote Sensing Image Scene Classification
期刊论文
OAI收割
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 卷号: 57, 期号: 10, 页码: 7492-7502
作者:
Fang, Jie
;
Yuan, Yuan
;
Lu, Xiaoqiang
;
Feng, Yachuang
  |  
收藏
  |  
浏览/下载:63/0
  |  
提交时间:2019/11/01
Frequency domain
joint representation
remote sensing image classification
robust
space domain
Learning Convolutional Domain-Robust Representations for Cross-View Face Recognition
期刊论文
OAI收割
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, 卷号: E97D, 期号: 12, 页码: 3239-3243
作者:
Chen, Xue
;
Wang, Chunheng
;
Xiao, Baihua
;
Gao, Song
收藏
  |  
浏览/下载:117/0
  |  
提交时间:2015/08/12
cross-view
face recognition
convolutional deep belief networks
domain-robust
Speech signal enhancement through wavelet domain MMSE filtering (EI CONFERENCE)
会议论文
OAI收割
2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, August 24, 2010 - August 26, 2010, Changchun, China
Fenghua Z.
;
Le Y.
;
Jian W.
;
Qiang S.
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2013/03/25
A new speech enhancement system that combine robust signal enhancement and minimum signal distortion is proposed in this paper. The proposed method introduces frequency depended
parametric
MMSE filtering techniques that involve wavelet packets. Voice activity detection (VAD) is used to further distinguish speech from noise and help to adaptively remove noise components from color noise eruptive noisy speech
while perceptual criteria is also taken into account. Experimental results and objective quality measurement test results validate the proposed speech enhancement system and illustrate the benefit of the proposed wavelet domain MMSE filtering as an excellent speech enhancement method to provide sufficient noise reduction and good intelligibility and perceptual quality
without causing considerable signal distortion and musical background noise method. 2010 IEEE.