中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [1]
地球化学研究所 [1]
自动化研究所 [1]
生态环境研究中心 [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [2]
会议论文 [1]
学位论文 [1]
发表日期
2023 [1]
2020 [1]
2018 [1]
2009 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A Data-Driven Iterative Learning Approach for Optimizing the Train Control Strategy
期刊论文
OAI收割
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 卷号: 19, 期号: 7, 页码: 7885-7893
作者:
Su, Shuai
;
Zhu, Qingyang
;
Liu, Junqing
;
Tang, Tao
;
Wei, Qinglai
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2023/11/17
Deep reinforcement learning (RL)
driving strategy
energy-efficient train control (EETC)
soft actorcritic (SAC)
高寒草地生态系统植被退化评价研究
学位论文
OAI收割
北京: 中国科学院生态环境研究中心, 2020
作者:
韩王亚
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2021/07/02
高寒草地退化,多尺度关联,驱动 因素,管理对策
Alpine Grassland Degradation, Multi-scale Correlation, Driving Factors, Management Strategy
Temporal and spatial distribution of phytoplankton functional groups and role of environment factors in a deep subtropical reservoir
期刊论文
OAI收割
Chinese Journal of Oceanology and Limnology, Chinese Journal of Oceanology and Limnology, 2018, 2018, 卷号: 36, 36, 期号: 3, 页码: 761-771, 761-771
作者:
LI Lei
;
LI Qiuhua
;
CHEN Jing’an
;
WANG Jingfu
;
JIAO Shulin
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2019/05/29
Phytoplankton Functional Groups
Phytoplankton Functional Groups
Temporal And Spatial Distribution
Growth Strategy
Driving Factors
Wanfeng Reservoir
Temporal And Spatial Distribution
Growth Strategy
Driving Factors
Wanfeng Reservoir
A dynamic data mining model for engineering management (EI CONFERENCE)
会议论文
OAI收割
2009 Second ISECS International Colloquium on Computing, Communication, Control, and Management, CCCM 2009, August 8, 2009 - August 9, 2009, Sanya, China
Zhu J.-W.
;
Tang Y.-G.
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2013/03/25
Data mining has become increasingly critical for the success of companies in this emerging era of Engineering Management. As Engineering Management activities increasingly shift to the web
the challenge facing corporate management is maintaining competitive advantage by building strong relations with employees
customers
and suppliers and partners. A good data mining strategy can help achieve this goal. Unfortunately
many companies use data mining technologies that do not suit today's new information era. This paper addresses the definitions about data mining
area of data mining
development of data mining
then provide an summary of the driving and impeding forces that help and hinder proper deployment of data mining strategies in Engineering Management. Finally
the paper advocates the strategy of data mining for Engineering Management. 2009 IEEE.