中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [3]
长春光学精密机械与物... [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [2]
SCI/SSCI论文 [1]
会议论文 [1]
发表日期
2021 [2]
2016 [1]
2009 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Crop yield forecasting and associated optimum lead time analysis based on multi-source environmental data across China
期刊论文
OAI收割
AGRICULTURAL AND FOREST METEOROLOGY, 2021, 卷号: 308, 页码: 12
作者:
  |  
收藏
  |  
浏览/下载:51/0
  |  
提交时间:2021/11/05
Crop yield forecast
Climate extremes
Remote sensing
Random forest
Lead time
Variable importance
Crop yield forecasting and associated optimum lead time analysis based on multi-source environmental data across China
期刊论文
OAI收割
AGRICULTURAL AND FOREST METEOROLOGY, 2021, 卷号: 308, 页码: 12
作者:
Li, Linchao
;
Wang, Bin
;
Feng, Puyu
;
Wang, Huanhuan
;
He, Qinsi
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2021/11/05
Crop yield forecast
Climate extremes
Remote sensing
Random forest
Lead time
Variable importance
Simulating low and high streamflow driven by snowmelt in an insufficiently gauged alpine basin
SCI/SSCI论文
OAI收割
2016
作者:
Zhang F. Y.
;
Ahmad, S.
;
Zhang, H. Q.
;
Zhao, X.
;
Feng, X. W.
收藏
  |  
浏览/下载:45/0
  |  
提交时间:2016/12/16
Streamflow
Cumulative temperature
Snowmelt
Infiltration
Kaidu River
basin
System dynamics
surface backscatter response
trmm precipitation radar
forecast lead
time
climate-change
united-states
river-basin
modeling approach
water-resources
soil-moisture
tarim river
Space camera focusing forecast based on RBF network (EI CONFERENCE)
会议论文
OAI收割
Computational Intelligence and Intelligent Systems: 4th International Symposium, ISICA 2009, Huangshi, China, October 23-25, 2009. Proceedings, Tiergartenstrasse 17, Heidelberg, D-69121, Germany
作者:
Liu J.
;
Yu D.
;
Yu D.
;
Liu J.
;
Liu J.
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2013/03/25
As circumstance temperature of space camera changes
flex of structural components and distortion of optical components lead to change of focal length and image quality. Radial Basis Function (RBF) network is used to approximate the complex nonlinear relation between focalization quantity
image quality
temperature level and axial temperature difference of space camera. After the RBF Network is trained with thermo-optical experiment data
temperature level and axial temperature difference could be input to the network to obtain colder value of best image position. In this way focusing forecast under different temperatures can be realized. Results of focusing forecast experiment validate this method. 2009 Springer-Verlag Berlin Heidelberg.