中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [4]
采集方式
OAI收割 [4]
内容类型
期刊论文 [4]
发表日期
2021 [4]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Encoder-Decoder Full Residual Deep Networks for Robust Regression and Spatiotemporal Estimation
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 卷号: 32, 期号: 9, 页码: 4217-4230
作者:
Li, Lianfa
;
Fang, Ying
;
Wu, Jun
;
Wang, Jinfeng
;
Ge, Yong
  |  
收藏
  |  
浏览/下载:74/0
  |  
提交时间:2021/11/05
Bias
deep learning
encoder-decoder
full residual deep network
non-linear regression
prediction of satellite aerosol optical depth (AOD) and PM2.5
spatiotemporal modeling
Encoder-Decoder Full Residual Deep Networks for Robust Regression and Spatiotemporal Estimation
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 卷号: 32, 期号: 9, 页码: 4217-4230
作者:
Li, Lianfa
;
Fang, Ying
;
Wu, Jun
;
Wang, Jinfeng
;
Ge, Yong
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2021/11/05
Bias
deep learning
encoder-decoder
full residual deep network
non-linear regression
prediction of satellite aerosol optical depth (AOD) and PM2.5
spatiotemporal modeling
Spatiotemporal estimation of satellite-borne and ground-level NO2 using full residual deep networks
期刊论文
OAI收割
REMOTE SENSING OF ENVIRONMENT, 2021, 卷号: 254, 页码: 22
作者:
Li, Lianfa
;
Wu, Jiajie
  |  
收藏
  |  
浏览/下载:61/0
  |  
提交时间:2021/03/15
OMI-NO2 columns
Imputation of missing values
Full residual deep network
Bagging
Ground-level NO2 estimation
Traffic and land-use variables
Uncertainty
Spatiotemporal estimation of satellite-borne and ground-level NO2 using full residual deep networks
期刊论文
OAI收割
REMOTE SENSING OF ENVIRONMENT, 2021, 卷号: 254, 页码: 22
作者:
Li, Lianfa
;
Wu, Jiajie
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2021/03/15
OMI-NO2 columns
Imputation of missing values
Full residual deep network
Bagging
Ground-level NO2 estimation
Traffic and land-use variables
Uncertainty