中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共4条,第1-4条 帮助

条数/页: 排序方式:
Influence of asymmetrical stator axes on the electromagnetic field and driving characteristics of canned induction motor 期刊论文  OAI收割
IET ELECTRIC POWER APPLICATIONS, 2019, 卷号: 13, 期号: 8, 页码: 1229-1239
作者:  
An Yuejun;  Zhang Zhiheng;  Li Ming;  Wang Guangyu;  Kong Xiangling
  |  收藏  |  浏览/下载:28/0  |  提交时间:2021/02/02
Study on spectrograph for ionosphere: A broadband imaging instrument prototype for far-ultraviolet (EI CONFERENCE) 会议论文  OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Space Exploration Technologies and Applications, May 24, 2011 - May 26, 2011, Beijing, China
作者:  
Wang S.-R.;  Lin G.-Y.;  Yu L.
收藏  |  浏览/下载:39/0  |  提交时间:2013/03/25
Current research on space-based exploration for the ionosphere needs more advanced technologies. Because the spectral signals in the ionosphere distributing basically in the far-ultraviolet waveband are very weak. Usual spectrometer structures and detectors such as CCD can't receive enough information. Based on this principle of atmospheric sounding  the imaging spectrometer prototype for ionosphere detection application was designed to solve the problem. This prototype consists of the telescope and the imaging spectrometer. The simple structure and small number of mirrors can help higher transmission efficiency be achieved and weak signals detection be implemented. The telescope is an off-axis parabolic mirror and the spectrometer is a modified Czerny-Turner spectral imaging system. Modified Czerny-Turner spectrometer contains a spherical mirror  a fixed plane grating and a toroidal mirror. By adjusting the incident angle to the collimating mirror and using toroidal mirror  coma and astigmatism were corrected well. We also optimize distances between the grating to the focusing mirror and the focusing mirror to the image plane to improve disadvantages of traditional Czerny-Turner structure. Designed results demonstrate that aberrations are substantially corrected  and high image quality can be obtained in broad waveband. The photon counting Wedge-Strip-Anode detector with micro-channel planes as the receiving plane is accepted for the instrument prototype. The other photon counting 2-D detector responding well for weak light such as Cross-Delay line detector and MAMA detector can also be used for detection. The calibration and performances testing system is made of a vacuum system  a deuterium lamp  a monochrometer and the instrument prototype. Results obtained from the experiment show that the spectral resolution is 2.4 nm and the spatial resolution is 80 m. The other calibration experiments are running. The technology of the spectrometer prototype is important for the research and applications of ionosphere remote sensing. 2011 SPIE.  
Design of high-resolution fourier transform lens (EI CONFERENCE) 会议论文  OAI收割
3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, AOMATT 2007: Advanced Optical Manufacturing Technologies, July 8, 2007 - July 12, 2007, Chengdu, China
作者:  
Zhang L.;  Zhang L.
收藏  |  浏览/下载:30/0  |  提交时间:2013/03/25
With the development of optical information processing  high-resolution Fourier transform lens has often been used in holographic data storage system  spatial filtering and observation of particles. This paper studies the optical design method of high-resolution Fourier transform optical lenses system  which could be used in particles observation and holographic data storage system. According to Fourier transform relation between object and its frequency plane and the theory of geometrical optics  the system with working wavelength 532nm and resolution 3 m was designed based on ZEMAX. A multi-configuration method was adopted to optimize the system's lenses. In the optical system  a diaphragm was placed at the system's spectrum plane and the system demanded a low vacuum to cut down the influences of atmosphere and other particles. The result of finite element analysis indicated that the influences of vacuum pumping to optics spacing and mirror surface shape very minor  and the imaging quality not being affected. This system has many advantages  such as simple structure  good image quality and a high resolution of 3 m. So it has a wide application prospect and can be used both in holographic data storage system and particles observation.  
Fabrication and electron emission of carbon microtubes (EI CONFERENCE) 会议论文  OAI收割
Technical Digest of the 18th International Vacuum Nanoelectronics Conference, IVNC 2005, July 10, 2005 - July 14, 2005, Oxford, United kingdom
作者:  
Liu L.;  Liu L.;  Wang W.;  Wang W.
收藏  |  浏览/下载:46/0  |  提交时间:2013/03/25
Carbon nanotubes have been attracting attention because of their unique physical properties and their application potential for field emission cathode. Carbon nanotubes possess the following properties favorable for field emission material  such as a high aspect ratio and sharp tip  high chemical stability  high mechanical strength  stable at high temperature. Some research works on carbon nanotubes field emitter and field emission display have been reported. Here  a kind of carbon microtubes and its field emission properties are introduced. They have some different properties with carbon nanotubes  and the density is lower than carbon nanotubes bundles. These carbon microtubes are directly synthesized by liquidoid epitaxy method on silicon substrates at low temperature. The field emission properties of carbon microtubes are reported too. Carbon microtubes film is synthesized in liquid by electrolysis. The graphite plate is as anode  and n-silicon substrate with resistivity of 4-8 cm is as cathode. The electrolysis current is about 5-8mA/cm2  and applied voltage is 800-1500V. Temperatures of the methanol base solution is maintained at 60C in process of deposition of carbon microtubes. Carbon microtubes film is observed by scanning electron microscopy(SEM)  as shown in fig.1(a  b). The wall's thickness of carbon microtube is about 60nm. The diameter of carbon microtube is about 0.8 m. Raman spectrum of carbon microtubes film shows the two peaks at 1342and 1560cm-1. The field emission properties of carbon microtubes are measured in high vacuum chamber(10-5Pa). The emission area of carbon microtubes is 0.5cm 0.5cm. The threshold of field emission of the carbon microtubes film is about 3.6V/ m. Field emission property of carbon microtubes film is shown in fig.2. Another  when the electric field between anode and cathode is 10V/ m  the electric field distribution on single carbon microtube is also given after calculation according to electric field theory. Fig 3 shows that electric field distribution vertical section on the of single carbon microtube top with 2 m of highness. These results may help us to understand field emission properties of carbon microtubes. According to research results  it is found that liquidoid synthesis is simple method to produce carbon microtubes cold cathode material  and the carbon microtubes have better field emission properties. 2005 IEEE.