中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [1]
长春光学精密机械与物... [1]
数学与系统科学研究院 [1]
上海药物研究所 [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [3]
会议论文 [1]
发表日期
2024 [1]
2018 [1]
2010 [1]
2009 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
Predicting Flood Event Class Using a Novel Class Membership Function and Hydrological Modeling
期刊论文
OAI收割
EARTHS FUTURE, 2024, 卷号: 12, 期号: 6, 页码: e2023EF004081
作者:
Zhang, Yongyong
;
Zhang, Yongqiang
;
Zhai, Xiaoyan
;
Xia, Jun
;
Tang, Qiuhong
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2024/07/12
flood event class
class membership function
hit rate
flood regime metrics
catchment hydrological model
A model averaging approach for the ordered probit and nested logit models with applications
期刊论文
OAI收割
JOURNAL OF APPLIED STATISTICS, 2018, 卷号: 45, 期号: 16, 页码: 3012-3052
作者:
Chen, Longmei
;
Wan, Alan T. K.
;
Tso, Geoffrey
;
Zhang, Xinyu
  |  
收藏
  |  
浏览/下载:158/0
  |  
提交时间:2018/11/16
Hit rate
model averaging
model selection
Monte Carlo
nested logit
ordered probit
screening
Prediction model of molten iron endpoint temperature in AOD furnace based on RBF neural network (EI CONFERENCE)
会议论文
OAI收割
2010 International Conference on Logistics Systems and Intelligent Management, ICLSIM 2010, January 9, 2010 - January 10, 2010, Harbin, China
Ma H.-T.
;
You W.
;
Chen T.
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2013/03/25
According to Jilin Ferroalloy Factory 10-ton AOD furnace actual smelting condition
analyzes the impact factor of AOD furnace molten iron endpoint temperature
by optimizing the neural network connection weights and structure
design prediction model of molten iron endpoint temperature based on RBF neural network
using LM algorithm and 50 furnaces actual production data to train the model
and predicts another 50 furnaces molten iron temperature
Result shows that prediction model of molten iron endpoint temperature based on RBF neural network has a high accuracy
when the error of endpoint temperature is 12 C
hit rate of temperature is 82.4%. 2010 IEEE.
Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets
期刊论文
OAI收割
ACTA PHARMACOLOGICA SINICA, 2009, 卷号: 30, 期号: 12, 页码: 1694-1708
作者:
Chen, Zhi
;
Li, Hong-lin
;
Zhang, Qi-jun
;
Bao, Xiao-guang
;
Yu, Kun-qian
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2019/01/08
pharmacophore
docking
LigandScout
enrichment
hit rate