中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共5条,第1-5条 帮助

条数/页: 排序方式:
Per-Packet Traffic Measurement in Storage, Computation and Bandwidth Limited Data Plane 期刊论文  OAI收割
IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 页码: 13
作者:  
Cong, Yinchuan;  Xie, Kun;  Wen, Jigang;  Zhang, Jiwei;  Yin, Yansong
  |  收藏  |  浏览/下载:4/0  |  提交时间:2024/12/06
An improved hyperspectral classification algorithm based on back-propagation neural networks (EI CONFERENCE) 会议论文  OAI收割
2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2012, June 1, 2012 - June 3, 2012, Nanjing, China
作者:  
Yu P.;  Yu P.
收藏  |  浏览/下载:34/0  |  提交时间:2013/03/25
In this paper  a new method is proposed to improve the classification performance of hyperspectral images by combining the principal component analysis (PCA)  genetic algorithm (GA)  and artificial neural networks (ANNs). First  some characteristics of the hyperspectral remotely sensed data  such as high correlation  high redundancy  etc.  are investigated. Based on the above analysis  we propose to use the principal component analysis to capture the main information existing in the hyperspectral images and reduce its dimensionality consequently. Next  we use neural networks to classify the reduced hyperspectral data. Since the back-propagation neural network we used is easy to suffer from the local minimum problem  we adopt a genetic algorithm to optimize the BP network's weights and the threshold. Experimental results show that the classification accuracy is improved and the time of calculation is reduced as well. 2012 IEEE.  
Double inverted pendulum control based on three-loop PID and improved BP neural network (EI CONFERENCE) 会议论文  OAI收割
2011 2nd International Conference on Digital Manufacturing and Automation, ICDMA 2011, August 5, 2011 - August 7, 2011, Zhangjiajie, Hunan, China
作者:  
Fan Y.
收藏  |  浏览/下载:37/0  |  提交时间:2013/03/25
To deal with the defects of BP neural networks used in balance control of inverted pendulum  such as longer train time and converging in partial minimum  this article reaLizes the control of double inverted pendulum with improved BP algorithm of artificial neural networks(ANN)  builds up a training model of test simulation and the BP network is 6-10-1 structure. Tansig function is used in hidden layer and PureLin function is used in output layer  LM is used in training algorithm. The training data is acquried by three-loop PID algorithm. The model is learned and trained with Matlab calculating software  and the simuLink simulation experiment results prove that improved BP algorithm for inverted pendulum control has higher precision  better astringency and lower calculation. This algorithm has wide appLication on nonLinear control and robust control field in particular. 2011 IEEE.  
Study of the neural network constitutive models for turfy soil with different decomposition degree (EI CONFERENCE) 会议论文  OAI收割
2011 2nd International Conference on Mechanic Automation and Control Engineering, MACE 2011, July 15, 2011 - July 17, 2011, Inner Mongolia, China
作者:  
Nie L.
收藏  |  浏览/下载:19/0  |  提交时间:2013/03/25
The turfy soil is of a special humus soil. The decomposition degree is the main factor on the physical and mechanical properties of turfy soil. To build the turfy soil constitutive model  there are a few shortages such as the calculation cumbersome and low accuracy for parameter value with the method of traditional models. Furthermore  those methods did not reflect the influence of strength that effected by decomposition degree of the turfy soil. In this paper  the relationship of stress-strain with different decomposition degrees of turfy soil was carried out through indoor tests. Based on above experimental results  an improved method  which divided into different zones according to different decomposition degrees of turfy soil and calculated combining with neural network constitutive model is put forward. The result shows that  the neural network of turfy soil has good fitting precision and good generalization ability. It can fully describe the influence of the turfy soil. 2011 IEEE.  
A MLP-PNN neural network for CCD image super-resolution in wavelet packet domain (EI CONFERENCE) 会议论文  OAI收割
2008 International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2008, October 12, 2008 - October 14, 2008, Dalian, China
Zhao X.; Fu D.; Zhai L.
收藏  |  浏览/下载:68/0  |  提交时间:2013/03/25
Image super-resolution methods process an input image sequence of a scene to obtain a still image with increased resolution. Classical approaches to this problem involve complex iterative minimization procedures  typically with high computational costs. In this paper is proposed a novel algorithm for super-resolution that enables a substantial decrease in computer load. First  decompose and reconstruct the image by wavelet packet. Before constructing the image  use neural network in place of other rebuilding method to reconstruct the coefficients in the wavelet packet domain. Second  probabilistic neural network architecture is used to perform a scattered-point interpolation of the image sequence data in the wavelet packet domain. The network kernel function is optimally determined for this problem by a MLP-PNN (Multi Layer Perceptron - Probabilistic Neural Network) trained on synthetic data. Network parameters dependent on the sequence noise level. This super-sampled image is spatially Altered to correct finite pixel size effects  to yield the final high-resolution estimate. This method can decrease the calculation cost and get perfect PSNR. Results are presented  showing the quality of the proposed method. 2008 IEEE.