中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共5条,第1-5条 帮助

条数/页: 排序方式:
A framework for diversifying recommendation lists by user interest expansion 期刊论文  OAI收割
KNOWLEDGE-BASED SYSTEMS, 2016, 卷号: 105, 期号: 1, 页码: 83-95
作者:  
Zhang, Zhu;  Zheng, Xiaolong;  Zeng, Daniel Dajun
  |  收藏  |  浏览/下载:34/0  |  提交时间:2019/10/08
A framework for diversifying recommendation lists by user interest expansion 期刊论文  OAI收割
KNOWLEDGE-BASED SYSTEMS, 2016, 卷号: 105, 页码: 83-95
作者:  
Zhang, Zhu;  Zheng, Xiaolong;  Zeng, Daniel Dajun
收藏  |  浏览/下载:25/0  |  提交时间:2016/10/20
船舶信息系统数据分发服务研究 期刊论文  OAI收割
计算机工程, 2013, 卷号: 39, 期号: 9, 页码: 94-97,113
廖闯; 郑刚; 高骞
  |  收藏  |  浏览/下载:104/0  |  提交时间:2014/12/16
A recommender system based on tag and time information for social tagging systems 期刊论文  OAI收割
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 卷号: 38, 期号: 4, 页码: 4575-4587
作者:  
Zheng, Nan;  Li, Qiudan
收藏  |  浏览/下载:31/0  |  提交时间:2015/08/12
Real-time motive vehicle detection with adaptive background updating model and HSV colour space (EI CONFERENCE) 会议论文  OAI收割
4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, November 19, 2008 - November 21, 2008, Chengdu, China
Rong-Hui Z.; Bai Y.; Hong-guang J.; Chen T.
收藏  |  浏览/下载:75/0  |  提交时间:2013/03/25
In the transportation monitor system  we set up the area of interest (AOI) of the vehicle model and adjust the size of AOI dynamically in order to track vehicle accurately. The results of experiment show that  motive vehicle detection by adopting digital image is one of key technologies. To detect motive vehicle accurately  the arithmetic proposed in the paper can suppress shadow availably  we establish an adaptive background updating model firstly. Noise is suppressed by using modality filter  detect motive vehicle accurately and satisfy real-time motive vehicle tracking. 2009 SPIE.  and we obtain binary image by using maximum entropy to choose dynamic adaptive threshold. Based on positive information of shadow and aspect feature of motive vehicle  we adopt HSV colour space and double threshold to solve the problem of vehicle shadow. According to prediction result of Kalman filtering