中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
水土保持研究所 [2]
长春光学精密机械与物... [1]
过程工程研究所 [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [3]
会议论文 [1]
发表日期
2018 [1]
2015 [1]
2011 [1]
2008 [1]
学科主题
Agricultur... [2]
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Spatial Patterns of Relationship Between Wheat Yield and Yield Components in China
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF PLANT PRODUCTION, 2018, 卷号: 12, 期号: 1, 页码: 61-71
作者:
Yu, Q (reprint author), Univ Technol, Sch Life Sci, POB 123, Sydney, NSW 2007, Australia.
;
Xiaoya Yang
;
Gregory S. McMaster
;
Qiang Yu
;
Yu, Q (reprint author), Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Peoples R China.
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2018/09/25
Wheat Yield
Yield Components
Spike Number
Kernel Number
Kernel Weight
Climate Elements
Photosynthetic rates and kernel-filling processes of big-spike wheat (Triticum aestivum L.) during the growth period
期刊论文
OAI收割
NEW ZEALAND JOURNAL OF CROP AND HORTICULTURAL SCIENCE, 2015, 卷号: 43, 期号: 3, 页码: 182-192
作者:
Wang, L.
;
Shangguan, Z.
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2016/01/19
big-spike wheat
kernel-filling process
kernel yield
photosynthetic rate
Triticum aestivum L
wheat
Genetic loci mapping associated with maize kernel number per ear based on a recombinant inbred line population grown under different nitrogen regimes
期刊论文
OAI收割
Genetics and Molecular Research, 2011, 卷号: 10, 期号: 4, 页码: 3267-3274
作者:
Liu, X. H.
;
He, S. L.
;
Zheng, Z. P.
;
Tan, Z. B.
;
Li, Z.
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2014/09/30
Maize (Zea mays)
Kernel number per ear
Nitrogen
Quantitative trait
QUANTITATIVE TRAIT LOCI
YIELD COMPONENTS
TROPICAL MAIZE
DROUGHT
TOLERANCE
USE EFFICIENCY
GRAIN-YIELD
QTLS
IDENTIFICATION
L.
RESISTANCE
A MLP-PNN neural network for CCD image super-resolution in wavelet packet domain (EI CONFERENCE)
会议论文
OAI收割
2008 International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2008, October 12, 2008 - October 14, 2008, Dalian, China
Zhao X.
;
Fu D.
;
Zhai L.
收藏
  |  
浏览/下载:68/0
  |  
提交时间:2013/03/25
Image super-resolution methods process an input image sequence of a scene to obtain a still image with increased resolution. Classical approaches to this problem involve complex iterative minimization procedures
typically with high computational costs. In this paper is proposed a novel algorithm for super-resolution that enables a substantial decrease in computer load. First
decompose and reconstruct the image by wavelet packet. Before constructing the image
use neural network in place of other rebuilding method to reconstruct the coefficients in the wavelet packet domain. Second
probabilistic neural network architecture is used to perform a scattered-point interpolation of the image sequence data in the wavelet packet domain. The network kernel function is optimally determined for this problem by a MLP-PNN (Multi Layer Perceptron - Probabilistic Neural Network) trained on synthetic data. Network parameters dependent on the sequence noise level. This super-sampled image is spatially Altered to correct finite pixel size effects
to yield the final high-resolution estimate. This method can decrease the calculation cost and get perfect PSNR. Results are presented
showing the quality of the proposed method. 2008 IEEE.