中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [2]
采集方式
OAI收割 [2]
内容类型
会议论文 [2]
发表日期
2010 [1]
2009 [1]
学科主题
筛选
浏览/检索结果:
共2条,第1-2条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A new research of sub-pixel level accuracy of TDICCD remote sensing image registration (EI CONFERENCE)
会议论文
OAI收割
2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, August 24, 2010 - August 26, 2010, Changchun, China
作者:
He B.
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2013/03/25
In the field of remote sensing imaging
TDICCD remote sensing images have a lot of their own characteristics
such as high-resolution
large amount of information
less overlapping parts of pixels
additional image blurring etc. Therefore
there exist many difficulties
especially in terms of high-accuracy registration of pairs of images. For that
this paper presents two new pixel interpolation method for sub-pixel level registering images that allows for scaling
translation and rotation. The proposed technique
which is based on the maximization of the correlation coefficient function
combines an efficient pixel-moving interpolation scheme with surface fitting
which greatly reduces the overall computational cost. The accuracy of the algorithm is evaluated by calculating correlation coefficient of couples of points belonging to images transformed with preset factors and also comparing it to other sorts of methods. The experiment results show that the accuracy of registration reaches 0.01 pixels. 2010 IEEE.
Level 0 and level 1 data processing for a type of hyper-spectral imager (EI CONFERENCE)
会议论文
OAI收割
2009 International Conference on Optical Instruments and Technology, OIT 2009, October 19, 2009 - October 21, 2009, Shanghai, China
Li X.
;
Yan C.
收藏
  |  
浏览/下载:71/0
  |  
提交时间:2013/03/25
Hyper-spectral imaging (HSI) is a kind of optical remote sensor that can simultaneously obtain spatial and spectral information of ground targets. We are now designing a data processing system for a type of space-borne push-broom HSI
then it performs radiometric and spectral calibration based on the ground calibration results and onboard calibration collection. The detailed algorithms for bad pixel replacement
which has 128 spectral channels covering the spectral range from 400nm to 2500nm. With its large amount of spectral channels
radiometric and spectral calibration were presented. After processing
the HSI collects large volume of spectral imaging data need to be efficiently and accurately processed and calibrated. In this paper
the digital numbers downlinked from the spacecraft can be converted into at-sensor absolute spectral radiance of ground targets
the detailed Level 0 and Level 1 data processing steps for the HSI were presented. The Level 0 processing refers to a set of tasks performed on the data downlinked from the spacecraft
thus providing accurate quantified spectral imaging data for various applications. 2009 SPIE.
including decoding to extract science data
separating the science data into files corresponding to different tasks (e.g. ground imaging
dark imaging
and onboard calibration)
checking data integrity and instrument settings
data format conversion
and Level 0 files creation. The Level 1 processing performs several steps on Level 0 data. Firstly
it corrects the image artifacts (mostly the SWIR smear effect)
subtracts the dark background
and performs the bad pixel replacement according to the prelaunch measurement