中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共4条,第1-4条 帮助

条数/页: 排序方式:
INFLUENCE OF SUBSTRATE MECHANICAL PROPERTIES ON DEPOSITION BEHAVIOUR OF 316L STAINLESS STEEL POWDER 期刊论文  OAI收割
ACTA METALLURGICA SINICA, 2016, 卷号: 52, 期号: 12, 页码: 1610-1618
作者:  
Ma Guanglu;  Cui Xinyu;  Shen Yanfang;  Cinca, Nuria;  Guilemany, Josep M.
  |  收藏  |  浏览/下载:96/0  |  提交时间:2021/02/02
Experimental study of the influence of thermal shock on mechanical properties of ceramic coating systems 会议论文  OAI收割
Beijing, China, June 16, 2013 - June 21, 2013
作者:  
Li XN(李霄娜);  Liang LH(粱立红);  Wei H;  Wei YG(魏悦广)
  |  收藏  |  浏览/下载:53/0  |  提交时间:2018/11/08
Fabrication technique of large-scale lightweight SiC space mirror (EI CONFERENCE) 会议论文  OAI收割
3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, AOMATT 2007: Large Mirrors and Telescopes, July 8, 2007 - July 12, 2007, Chengdu, China
作者:  
Zhang G.;  Zhang G.;  Zhang G.
收藏  |  浏览/下载:20/0  |  提交时间:2013/03/25
Silicon carbide (SiC) is a new type candidate material for large-scale lightweight space mirror. Its low thermal distortion  high stiffness  high optical quality  and its dimensional stability are better than other traditional optical substrate materials such as ULE  Zerodure  Beryllium (Be) and so on. In this paper  the lightweight silicon carbide space mirror blank was fabricated by reaction sintering. As a space born mirror material  silicon carbide must be an optical grade ceramic. So we prepared the silicon carbide green body with gel-casting method. Then some carbon materials were supplemented into the green body which will bring reaction-sintering with silicon in a vacuum furnace during 1500-1600C  ultimately the reaction bonded silicon carbide was made. The diameter of SiC space mirror blank we have made is 680mm. If expanding the size of the vacuum furnace  bigger mirror blank can be obtained. The test results show that the mechanical and thermal properties of RB-SiC are excellent with bending strength of 350MPa  fracture toughness of 4.1 MPa·m1/2 and coefficient of thermal expansion(CET) of 2.6710-6/K. The surface roughness(RMS) could be better than 3nm.  
Fabrication and electron emission of carbon microtubes (EI CONFERENCE) 会议论文  OAI收割
Technical Digest of the 18th International Vacuum Nanoelectronics Conference, IVNC 2005, July 10, 2005 - July 14, 2005, Oxford, United kingdom
作者:  
Liu L.;  Liu L.;  Wang W.;  Wang W.
收藏  |  浏览/下载:40/0  |  提交时间:2013/03/25
Carbon nanotubes have been attracting attention because of their unique physical properties and their application potential for field emission cathode. Carbon nanotubes possess the following properties favorable for field emission material  such as a high aspect ratio and sharp tip  high chemical stability  high mechanical strength  stable at high temperature. Some research works on carbon nanotubes field emitter and field emission display have been reported. Here  a kind of carbon microtubes and its field emission properties are introduced. They have some different properties with carbon nanotubes  and the density is lower than carbon nanotubes bundles. These carbon microtubes are directly synthesized by liquidoid epitaxy method on silicon substrates at low temperature. The field emission properties of carbon microtubes are reported too. Carbon microtubes film is synthesized in liquid by electrolysis. The graphite plate is as anode  and n-silicon substrate with resistivity of 4-8 cm is as cathode. The electrolysis current is about 5-8mA/cm2  and applied voltage is 800-1500V. Temperatures of the methanol base solution is maintained at 60C in process of deposition of carbon microtubes. Carbon microtubes film is observed by scanning electron microscopy(SEM)  as shown in fig.1(a  b). The wall's thickness of carbon microtube is about 60nm. The diameter of carbon microtube is about 0.8 m. Raman spectrum of carbon microtubes film shows the two peaks at 1342and 1560cm-1. The field emission properties of carbon microtubes are measured in high vacuum chamber(10-5Pa). The emission area of carbon microtubes is 0.5cm 0.5cm. The threshold of field emission of the carbon microtubes film is about 3.6V/ m. Field emission property of carbon microtubes film is shown in fig.2. Another  when the electric field between anode and cathode is 10V/ m  the electric field distribution on single carbon microtube is also given after calculation according to electric field theory. Fig 3 shows that electric field distribution vertical section on the of single carbon microtube top with 2 m of highness. These results may help us to understand field emission properties of carbon microtubes. According to research results  it is found that liquidoid synthesis is simple method to produce carbon microtubes cold cathode material  and the carbon microtubes have better field emission properties. 2005 IEEE.