中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
金属研究所 [1]
地理科学与资源研究所 [1]
长春光学精密机械与物... [1]
采集方式
OAI收割 [3]
内容类型
期刊论文 [2]
会议论文 [1]
发表日期
2021 [1]
2009 [2]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A GIS-Based Multi-Criterion Decision-Making Method to Select City Fire Brigade: A Case Study of Wuhan, China
期刊论文
OAI收割
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 卷号: 10, 期号: 11, 页码: 26
作者:
Jiang, Yuncheng
;
Lv, Aifeng
;
Yan, Zhigang
;
Yang, Zhen
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2022/09/21
spatial optimization
point of interest
potential fire-risk zone
multi-criterion decision-making
traffic situation
Using bidirectional binary particle swarm optimization for feature selection in feature-level fusion recognition system (EI CONFERENCE)
会议论文
OAI收割
2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, May 25, 2009 - May 27, 2009, Xi'an, China
作者:
Wang D.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2013/03/25
In feature-level fusion recognition system
the other is optimizing system sensor design to get outstanding cost performance. So feature selection become usually necessary to reduce dimensionality of the combination of multi-sensor features and improve system performance in system design. In general
there are two main missions. One is improving the recognition correct rate as soon as possible
the optimization is usually applied to feature selection because of its computational feasibility and validity. For further improving recognition accuracy and reducing selected feature dimensions
this paper presents a more rational and accurate optimization
Bidirectional Binary Particle Swarm Optimization (BBPSO) algorithm for feature selection in feature-level fusion target recognition system. In addition
we introduce a new evaluating function as criterion function in BBPSO feature selection method. At the last
we utilized Leave-One-Out method to validate the proposed method. The experiment results show that the proposed algorithm improves classification accuracy by two percentage points
while the selected feature dimensions are less one dimension than original Particle Swarm Optimization approach with 16 original feature dimensions. 2009 IEEE.
Couplings in Multi-criterion Aerodynamic Optimization Problems Using Adjoint Methods and Game Strategies
期刊论文
OAI收割
CHINESE JOURNAL OF AERONAUTICS, 2009, 卷号: 22, 期号: 1, 页码: 1-8
作者:
Tang Zhili
;
Dong Jun
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2021/02/26
DESIGN
multi-criterion optimization
aerodynamics
adjoint methods
game strategies
Nash game
Stackelberg game
Pareto front