中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共11条,第1-10条 帮助

条数/页: 排序方式:
Cloud Detection Algorithm for Multi-Satellite Remote Sensing Imagery Based on a Spectral Library and 1D Convolutional Neural Network 期刊论文  OAI收割
REMOTE SENSING, 2021, 卷号: 13, 期号: 16, 页码: 20
作者:  
Ma, Nan;  Sun, Lin;  Zhou, Chenghu;  He, Yawen
  |  收藏  |  浏览/下载:37/0  |  提交时间:2021/11/05
Using multi-angle hyperspectral data to monitor canopy leaf nitrogen content of wheat SCI/SSCI论文  OAI收割
2016
作者:  
Song X.;  Xu, D. Y.;  He, L.;  Feng, W.;  Wang, Y. H.
  |  收藏  |  浏览/下载:37/0  |  提交时间:2017/11/09
Prediction of soil properties using laboratory VIS-NIR spectroscopy and Hyperion imagery 期刊论文  OAI收割
JOURNAL OF GEOCHEMICAL EXPLORATION, 2013, 卷号: 132, 页码: 26-33
作者:  
Lu, Peng;  Wang, Li;  Niu, Zheng;  Li, Linghao;  Zhang, Wenhao
  |  收藏  |  浏览/下载:4/0  |  提交时间:2023/04/25
A New Data Transformation Method for Cbers-02b Multi-spectral Images 会议论文  OAI收割
Bangkok, THAILAND, September 30, 2011 - October 1, 2011
Zhang, Chengwen; Tang, Jiakui; Mi, Sujuan; Zhao, Lijun; Li, Yongzhi; Yu, Xinju
  |  收藏  |  浏览/下载:29/0  |  提交时间:2013/03/11
Destriping method using lifting wavelet transform of remote sensing image (EI CONFERENCE) 会议论文  OAI收割
2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, August 24, 2010 - August 26, 2010, Changchun, China
作者:  
He B.
收藏  |  浏览/下载:30/0  |  提交时间:2013/03/25
Based on the characteristic of striping noise in remote sensing images  a new destriping noise technique for the improved multi-threshold method using lifting wavelet transform applied to remote sensing imagery is presented in this letter. Have used the lifting wavelet decomposition algorithm  the thresholds are determined by corresponding wavelet coefficients in every scale. Remote sensing imagery is so large that the algorithm must be fast and effective. The lifting wavelet transform is easily realized and inexpensive in computer time and storage space compared with the traditional wavelet transform. We also compare the method with some traditional destriping methods both by visual inspection and by appropriate indexes of quality of the denoised images. From the comparison we can see that the adaptive threshold method can preserve the spectral characteristic of the images while effectively remove striping noise and it did better than the existed ones. 2010 IEEE.  
Improvement of urban land use and land cover classification approach in arid areas 会议论文  OAI收割
Proceedings of SPIE - The International Society for Optical Engineering, Image and Signal Processing for Remote Sensing XVI, Toulouse, France, 2010
Qian; Jing1; 2; Zhou; Qiming1; Chen; Xi2
收藏  |  浏览/下载:34/0  |  提交时间:2011/08/23
Using multi-spectral remote sensing data to extract and analyze the vegetation information in desert areas - A case in the western Gurbantunggut desert 会议论文  OAI收割
Proceedings-2009 International Conference on Environmental Science and Information Application Technology, ESIAT, Wuhan, China, 2009
Zhao; Huai-Bao1; Liu; Tong2; Cui; Yao-Ping3; Lei; Jia-Qiang1
收藏  |  浏览/下载:27/0  |  提交时间:2011/08/23
A Regional-memory-pattern Artificial Idiotypic Network and its Application in Multi-spectral Remote Sensing Image Classification 会议论文  OAI收割
2008 International Workshop on Education Technology and Training and 2008 International Workshop on Geoscience and Remote Sensing, Vol 2, Proceedings, Los Alamitos
Liu Qingjie; Lin Qizhong; Wu Yunzhao; Wang Qinjun
收藏  |  浏览/下载:42/0  |  提交时间:2014/12/07
Study on shallow groundwater information extraction technology based on multi-spectral data and spatial data 期刊论文  OAI收割
SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2009, 卷号: 52, 期号: 5, 页码: 1420-1428
作者:  
Yu DeHao;  Deng ZhengDong;  Long Fan;  Guan HongJun;  Wang DaQing
  |  收藏  |  浏览/下载:15/0  |  提交时间:2021/02/26
A novel airborne digital camera system - art. no. 620007 会议论文  OAI收割
Remote Sensing of the Environment: 15th National Symposium on Remote Sensing of China, Bellingham
Fang, Junyong; Liu, Xue; Wei, Zheng; Zhang, Bing; Zheng, Lanfen; Tong, Qingxi
收藏  |  浏览/下载:29/0  |  提交时间:2014/12/07