中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [5]
计算技术研究所 [1]
长春光学精密机械与物... [1]
科技战略咨询研究院 [1]
国家天文台 [1]
采集方式
OAI收割 [9]
内容类型
期刊论文 [7]
会议论文 [1]
学位论文 [1]
发表日期
2022 [1]
2021 [2]
2019 [1]
2018 [2]
2011 [2]
2010 [1]
更多
学科主题
Artificial... [1]
Computer S... [1]
Electrical... [1]
筛选
浏览/检索结果:
共9条,第1-9条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A hybrid-supervision learning algorithm for real-time un-completed face recognition
期刊论文
OAI收割
COMPUTERS & ELECTRICAL ENGINEERING, 2022, 卷号: 101, 页码: 17
作者:
Zhao, Shuhuan
;
Liu, Wen
;
Liu, Shuaiqi
;
Ge, Jiaqi
;
Liang, Xiaolin
  |  
收藏
  |  
浏览/下载:39/0
  |  
提交时间:2022/11/14
Face recognition
Feature fusion
Hybrid supervised learning
Multiple marginal Fisher analysis
Industrial Weak Scratches Inspection Based on Multifeature Fusion Network
期刊论文
OAI收割
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 卷号: 70, 期号: 1, 页码: 14
作者:
Tao, Xian
;
Zhang, Dapeng
;
Hou, Wei
;
Ma, Wenzhi
;
Xu, De
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2021/03/08
Deep learning
defect detection
machine vision
multiple feature fusion
weak scratch inspection
Shared Low-Rank Correlation Embedding for Multiple Feature Fusion
期刊论文
OAI收割
IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 卷号: 23, 页码: 1855-1867
作者:
Wang, Zhan
;
Wang, Lizhi
;
Wan, Jun
;
Huang, Hua
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2021/12/28
Correlation
Kernel
Task analysis
Fuses
Noise measurement
Laplace equations
Dictionaries
Common subspace
low-rank representation
multiple feature fusion
canonical correlation analysis
Visual Tracking Based on Multi-Feature and Fast Scale Adaptive Kernelized Correlation Filter
期刊论文
OAI收割
IEEE ACCESS, 2019, 卷号: 7, 页码: 83209-83228
作者:
Zeng, Xianyou
;
Xu, Long
;
Cen, Yigang
;
Zhao, Ruizhen
;
Hu, Shaohai
  |  
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2020/03/10
Visual tracking
scale filter
dimension reduction
multiple feature fusion
dynamic learning rate
Fusing magnitude and phase features with multiple face models for robust face recognition
期刊论文
OAI收割
FRONTIERS OF COMPUTER SCIENCE, 2018, 卷号: 12, 期号: 6, 页码: 1173-1191
作者:
Li, Yan
;
Wang, Ruiping
;
Cui, Zhen
;
Chen, Xilin
;
Shan, Shiguang
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2019/04/03
face recognition
fisher discriminant analysis
fusion
Gabor magnitude feature
multiple face models
spatial pyramid based local phase quantization
fMRI classification method with multiple feature fusion based on minimum spanning tree analysis
期刊论文
OAI收割
PSYCHIATRY RESEARCH-NEUROIMAGING, 2018, 卷号: 277, 页码: 14-27
作者:
Guo, Hao
;
Yan, Pengpeng
;
Cheng, Chen
;
Li, Yao
;
Chen, Junjie
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2019/12/16
Functional brain network
Minimum spanning tree
Classifier
Depression
Multiple feature fusion
The new approach for infrared target tracking based on the particle filter algorithm (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Infrared Imaging and Applications, May 24, 2011 - May 24, 2011, Beijing, China
作者:
Sun H.
;
Han H.-X.
;
Sun H.
收藏
  |  
浏览/下载:60/0
  |  
提交时间:2013/03/25
Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring
precision
and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection
the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure
but in order to capture the change of the state space
it need a certain amount of particles to ensure samples is enough
and this number will increase in accompany with dimension and increase exponentially
this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining"
we expand the classic Mean Shift tracking framework.Based on the previous perspective
we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis
Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism
used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy to further improve tracking performance. Experimental results show that this algorithm can compensate shortcoming of the particle filter has too much computation
and can effectively overcome the fault that mean shift is easy to fall into local extreme value instead of global maximum value.Last because of the gray and fusion target motion information
this approach also inhibit interference from the background
ultimately improve the stability and the real-time of the target track. 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Multiple-kernel SVM based multiple-task oriented data mining system for gene expression data analysis
期刊论文
OAI收割
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 卷号: 38, 期号: 10, 页码: 9,12151-12159
Chen, ZY
;
Li, JP
;
Wei, LW
;
Xu, WX
;
Shi, Y
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2012/11/12
Support vector machine
Multiple-kernel learning
Feature selection
Data fusion
Decision rule
Associated rule
Subclass discovery
Gene expression
基于局部特征的物体分类关键技术研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2010
作者:
欧阳毅
收藏
  |  
浏览/下载:75/0
  |  
提交时间:2015/09/02
物体分类
局部特征
局部特征学习
多特征融合
Object categorization
Local feature
Local feature learning
Multiple feature fusion