中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
心理研究所 [1]
自动化研究所 [1]
沈阳自动化研究所 [1]
合肥物质科学研究院 [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [3]
会议论文 [1]
发表日期
2023 [1]
2018 [1]
2016 [1]
2013 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Class-Oriented Self-Learning Graph Embedding for Image Compact Representation
期刊论文
OAI收割
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 卷号: 33, 期号: 1, 页码: 74-87
作者:
Hu, Liangchen
;
Dai, Zhenlei
;
Tian, Lei
;
Zhang, Wensheng
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2023/03/20
Sparse matrices
Manifolds
Machine learning algorithms
Laplace equations
Heuristic algorithms
Data models
Data mining
Adaptive graph learning
separability examination
marginal information preserving
L-2,L-p-norm sparsity
compact representation
Boosting water conservation by improving campaign: Evidence from a field study in China
期刊论文
OAI收割
URBAN WATER JOURNAL, 2018, 卷号: 15, 期号: 10, 页码: 966-973
作者:
Sun, Yan
;
Li, Pengna
;
She, Shengxiang
;
Eimontaite, Iveta
;
Yang, Bo
  |  
收藏
  |  
浏览/下载:56/0
  |  
提交时间:2019/04/22
Water conservation
campaign
field study
quantitative information
norm information
Adaptive modelling of gene regulatory network using Bayesian information criterion-guided sparse regression approach
期刊论文
OAI收割
IET SYSTEMS BIOLOGY, 2016, 卷号: 10, 期号: 6, 页码: 252-259
作者:
Shi, Ming
;
Shen, Weiming
;
Wang, Hong-Qiang
;
Chong, Yanwen
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2017/12/18
Genetics
Bayes Methods
Genomics
Regression Analysis
Inference Mechanisms
Bioinformatics
Adaptive Modelling
Gene Regulatory Network
Bayesian Information Criterion-guided Sparse Regression Approach
Grn
Microarray Expression Data
Systems Biology
Grn Reconstruction
Optimisation
l(1)-norm Regularisation
A shape context based Hausdorff similarity measure in image matching
会议论文
OAI收割
5th International Symposium on Photoelectronic Detection and Imaging (ISPDI) - Infrared Imaging and Applications, Beijing, June 25-27, 2013
作者:
Ma TL(马天磊)
;
Liu YP(刘云鹏)
;
Shi ZL(史泽林)
;
Yin J(尹健)
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2013/12/26
The traditional Hausdorff measure, which uses Euclidean distance metric (L2 norm) to define the distance between coordinates of any two points, has poor performance in the presence of the rotation and scale change although it is robust to the noise and occlusion. To address the problem, we define a novel similarity function including two parts in this paper. The first part is Hausdorff distance between shapes which is calculated by exploiting shape context that is rotation and scale invariant as the distance metric. The second part is the cost of matching between centroids. Unlike the traditional method, we use the centroid as reference point to obtain its shape context that embodies global information of the shape. Experiment results demonstrate that the function value between shapes is rotation and scale invariant and the matching accuracy of our algorithm is higher than that of previously proposed algorithm on the MEPG-7 database.