中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共9条,第1-9条 帮助

条数/页: 排序方式:
Analysis, design, and testing of mechanical switch for the backup protection of switching network unit in fusion device 期刊论文  OAI收割
FUSION ENGINEERING AND DESIGN, 2024, 卷号: 208
作者:  
Xu, Qianglin;  Song, Zhiquan;  Li, Hua;  Xu, Meng
  |  收藏  |  浏览/下载:6/0  |  提交时间:2024/11/20
A multidimensional analysis of self-esteem and individualism: A deep learning-based model for predicting elementary school students' academic performance 期刊论文  OAI收割
Measurement: Sensors, 2024, 卷号: 33
作者:  
Deng, Jielin;  Huang, Xiaohua;  Ren, Xiaopeng
  |  收藏  |  浏览/下载:101/0  |  提交时间:2024/05/27
A novel defect based fatigue damage model coupled with an optimized neural network for high cycle fatigue analysis of casting alloys with surface defect 期刊论文  OAI收割
INTERNATIONAL JOURNAL OF FATIGUE, 2023, 卷号: 170, 页码: 107538
作者:  
Gao, Tongzhou;  Ji, Chenhao;  Zhan, Zhixin;  Huang, Yingying;  Liu CQ(刘传奇)
  |  收藏  |  浏览/下载:46/0  |  提交时间:2023/04/20
A Novel Parameter-Optimized Recurrent Attention Network for Pipeline Leakage Detection 期刊论文  OAI收割
IEEE/CAA Journal of Automatica Sinica, 2023, 卷号: 10, 期号: 4, 页码: 1064-1076
作者:  
Tong Sun;  Chuang Wang;  Hongli Dong;  Yina Zhou;  Chuang Guan
  |  收藏  |  浏览/下载:22/0  |  提交时间:2023/03/22
Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia 期刊论文  OAI收割
JOURNAL OF MOUNTAIN SCIENCE, 2019, 卷号: 16, 期号: 2, 页码: 383-401
作者:  
Soma, Andang Suryana;  Kubota, Tetsuya;  Mizuno, Hideaki
  |  收藏  |  浏览/下载:14/0  |  提交时间:2020/11/02
Assessing methods of identifying open water bodies using Landsat 8 OLI imagery SCI/SSCI论文  OAI收割
2016
作者:  
Liu Z. F.;  Yao, Z. J.;  Wang, R.
  |  收藏  |  浏览/下载:23/0  |  提交时间:2017/11/09
Enhancing synchronizability by rewiring networks 期刊论文  OAI收割
CHINESE PHYSICS B, 2010, 卷号: 19, 期号: 8
作者:  
Wang LiFu;  Wang QingLi;  Kong Zhi;  Jing YuanWei
  |  收藏  |  浏览/下载:18/0  |  提交时间:2021/02/02
Enhancing synchronizability by rewiring networks 期刊论文  OAI收割
CHINESE PHYSICS B, 2010, 卷号: 19, 期号: 8
作者:  
Wang LiFu;  Wang QingLi;  Kong Zhi;  Jing YuanWei
  |  收藏  |  浏览/下载:12/0  |  提交时间:2021/02/02
Study on color model conversion for camera with neural network based on the combination between second general revolving combination design and genetic algorithm (EI CONFERENCE) 会议论文  OAI收割
ICO20: Illumination, Radiation, and Color Technologies, August 21, 2005 - August 26, 2005, Changchun, China
作者:  
Li Z.;  Zhou F.;  Wang C.;  Li Z.
收藏  |  浏览/下载:36/0  |  提交时间:2013/03/25
Munsell color system is selected to establish the mutual conversion between RGB and L*a*b* color model for camera. The color luminance meter and CCD camera synchronously measure the same color card  XYZ value is gotten from the color luminance meter  the training error is 0.000748566  it can show that the method combining second general revolving combination design with genetic algorithm can optimize the hidden-layer structure of neural network. Using the data of testing set to test this network and calculating the color difference between forecast value and true value  the color picture captured from CCD camera is expressed for RGB value as the input of neural network  and the L*a*b* value converted from XYZ value is regarded as the real color value of target card  which the difference is not obvious comparing with forecast result  the maximum is 5.6357 NBS  namely the output of neural network. The neural network of two hidden-layers is considered  the minimum is 0.5311 NBS  so the second general revolving combination design is introduced into optimizing the structure of neural network  and the average of color difference is 3.1744 NBS.  which can carry optimization through unifying project design  data processing and the precision of regression equation. Their mathematics model of encoding space is gained  and the significance inspection shows the confidence degree of regression equation is 99%. The mathematics model is optimized by genetic algorithm  optimization solution is gotten  and function value of the goal is 0.0007168. The neural network of the optimization solution is trained