中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [6]
长春光学精密机械与物... [3]
上海神经科学研究所 [2]
遥感与数字地球研究所 [1]
西安光学精密机械研究... [1]
软件研究所 [1]
更多
采集方式
OAI收割 [14]
内容类型
期刊论文 [7]
会议论文 [4]
学位论文 [3]
发表日期
2021 [1]
2017 [1]
2015 [1]
2013 [1]
2012 [1]
2010 [2]
更多
学科主题
Life Scien... [1]
Neuroscien... [1]
电子、电信技术::信... [1]
电子、电信技术::计... [1]
筛选
浏览/检索结果:
共14条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Orientation Field Code Hashing: A Novel Method for Fast Palmprint Identification
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2021, 卷号: 8, 期号: 5, 页码: 1038-1051
作者:
Xi Chen
;
Ming Yu
;
Feng Yue
;
Bin Li
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2021/04/09
Biometric system
hashing
orientation feature
palmprint identification
Orientation judgment for abstract paintings
期刊论文
OAI收割
MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 卷号: 76, 期号: 1, 页码: 1017-1036
作者:
Liu, Jia
;
Dong, Weiming
;
Zhang, Xiaopeng
;
Jiang, Zhiguo
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2017/01/22
Abstract Paintings
Image Classification
Feature Extraction
Orientation Judgment
Art Theory
Image classification using boosted local features with random orientation and location selection
期刊论文
OAI收割
Information Sciences, 2015, 期号: 310, 页码: 118-129
作者:
Zhang CJ(张淳杰)
;
Cheng J(程健)
;
Zhang YF(张一帆)
;
Liu J(刘静)
;
Liang C(梁超)
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2017/09/19
Sparse Coding
Image Classification
Random Orientation
Boosting
Local Feature Selection
遥感影像像斑综合相邻势能分析的随机场模型
期刊论文
OAI收割
武汉大学学报(信息科学版), 2013, 卷号: 38, 期号: 12, 页码: 1470-1474
龚龑
;
李亮
;
王琰
;
陶醉
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2014/12/16
像斑
方位特征
空间关系
随机场
空间邻接
segments
orientation feature
spatial relation
random field
spatial adjacency
Features extraction and matching of teeth image based on the SIFT algorithm (EI CONFERENCE)
会议论文
OAI收割
2012 2nd International Conference on Computer Application and System Modeling, ICCASM 2012, July 27, 2012 - July 29, 2012, Shenyang, China
作者:
Wang X.
;
Wang X.
;
Wang X.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/03/25
Using of SIFT algorithm in the image of teeth model
can detect the features of the teeth image effectively. In this approach
first
search over all scales and image locations by using a difference-of-Gaussian function to identify potential interest points that are invariant to scale and orientation. Second
select keypoints based on measures of their stability and a detailed model is fit to determine location and scale at each candidate location. Third
assign one or more orientations to each keypoint location based on local image gradient directions. Last
measure the local image gradients at the selected scale in the region around each keypoint. And then use the KNN algorithm to match the features. Through lots of experiments and comparing with other feature extraction methods
this method can detect the features of the teeth model effectively
and offer some available parameters for 3D reconstruction of the teeth model. the authors.
Local Feature Based Geometric-Resistant Image Information Hiding
期刊论文
OAI收割
cognitive computation, 2010, 卷号: 2, 期号: 2, 页码: 68-77
作者:
Gao, Xinbo
;
Deng, Cheng
;
Li, Xuelong
;
Tao, Dacheng
收藏
  |  
浏览/下载:191/32
  |  
提交时间:2011/01/11
Visual cognition
Image watermarking
Scale invariant feature transform
Orientation alignment
Discrete Fourier transform
Visual neuroscience research in China
期刊论文
OAI收割
SCIENCE CHINA-LIFE SCIENCES, 2010, 卷号: 53, 期号: 3, 页码: 363-373
Yao HaiShan
;
Lu HaiDong
;
Wang Wei
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2012/07/13
visual cortices
contextual modulation
feedback
feature binding
motion processing
perceptual learning
functional brain imaging
eye movement
visual development and senescence
RETINAL GANGLION-CELLS
LATERAL GENICULATE-NUCLEUS
RECEPTIVE-FIELD PROPERTIES
STRIATE CORTICAL-NEURONS
ORIENTATION COLUMN MAPS
MACAQUE MONKEY
FUNCTIONAL ARCHITECTURE
CONTRAST SENSITIVITY
SPATIAL SUMMATION
V1 NEURONS
A New Image Feature Point Detection Method Based on Log-Gabor Gradient Feature
会议论文
OAI收割
2009 Joint Urban Remote Sensing Event, Vols 1-3, New York
Yang Jian
;
Zhao Zhongming
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2014/12/07
Auto Registration
Log-Gabor
Gradient Feature
Multi-Scale
Multi-Orientation
图像特征检测与匹配研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2008
作者:
王志衡
收藏
  |  
浏览/下载:82/0
  |  
提交时间:2015/09/02
特征检测
特征匹配
伪球滤波器
内积能量
局部方向分布
均值标准差描述子
直线匹配
曲线匹配
feature detection
feature matching
pseudosphere filter
local orientation distribution
mean standard deviation descriptor
line matching
curve matching
Integrated intensity, orientation code and spatial information for robust tracking (EI CONFERENCE)
会议论文
OAI收割
2007 2nd IEEE Conference on Industrial Electronics and Applications, ICIEA 2007, May 23, 2007 - May 25, 2007, Harbin, China
作者:
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2013/03/25
real-time tracking is an important topic in computer vision. Conventional single cue algorithms typically fail outside limited tracking conditions. Integration of multimodal visual cues with complementary failure modes allows tracking to continue despite losing individual cues. In this paper
we combine intensity
orientation codes and special information to form a new intensity-orientation codes-special (IOS) feature to represent the target. The intensity feature is not affected by the shape variance of object and has good stability. Orientation codes matching is robust for searching object in cluttered environments even in the cases of illumination fluctuations resulting from shadowing or highlighting
etc The spatial locations of the pixels are used which allow us to take into account the spatial information which is lost in traditional histogram. Histograms of intensity
orientation codes and spatial information are employed for represent the target Mean shift algorithm is a nonparametric density estimation method. The fast and optimal mode matching can be achieved by this method. In order to reduce the compute time
we use the mean shift procedure to reach the target localization. Experiment results show that the new method can successfully cope with clutter
partial occlusions
illumination change
and target variations such as scale and rotation. The computational complexity is very low. If the size of the target is 3628 pixels
it only needs 12ms to complete the method. 2007 IEEE.