中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共14条,第1-10条 帮助

条数/页: 排序方式:
Orientation Field Code Hashing: A Novel Method for Fast Palmprint Identification 期刊论文  OAI收割
IEEE/CAA Journal of Automatica Sinica, 2021, 卷号: 8, 期号: 5, 页码: 1038-1051
作者:  
Xi Chen;  Ming Yu;  Feng Yue;  Bin Li
  |  收藏  |  浏览/下载:24/0  |  提交时间:2021/04/09
Orientation judgment for abstract paintings 期刊论文  OAI收割
MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 卷号: 76, 期号: 1, 页码: 1017-1036
作者:  
Liu, Jia;  Dong, Weiming;  Zhang, Xiaopeng;  Jiang, Zhiguo
  |  收藏  |  浏览/下载:31/0  |  提交时间:2017/01/22
Image classification using boosted local features with random orientation and location selection 期刊论文  OAI收割
Information Sciences, 2015, 期号: 310, 页码: 118-129
作者:  
Zhang CJ(张淳杰);  Cheng J(程健);  Zhang YF(张一帆);  Liu J(刘静);  Liang C(梁超)
  |  收藏  |  浏览/下载:16/0  |  提交时间:2017/09/19
遥感影像像斑综合相邻势能分析的随机场模型 期刊论文  OAI收割
武汉大学学报(信息科学版), 2013, 卷号: 38, 期号: 12, 页码: 1470-1474
龚龑; 李亮; 王琰; 陶醉
  |  收藏  |  浏览/下载:16/0  |  提交时间:2014/12/16
Features extraction and matching of teeth image based on the SIFT algorithm (EI CONFERENCE) 会议论文  OAI收割
2012 2nd International Conference on Computer Application and System Modeling, ICCASM 2012, July 27, 2012 - July 29, 2012, Shenyang, China
作者:  
Wang X.;  Wang X.;  Wang X.
收藏  |  浏览/下载:28/0  |  提交时间:2013/03/25
Using of SIFT algorithm in the image of teeth model  can detect the features of the teeth image effectively. In this approach  first  search over all scales and image locations by using a difference-of-Gaussian function to identify potential interest points that are invariant to scale and orientation. Second  select keypoints based on measures of their stability and a detailed model is fit to determine location and scale at each candidate location. Third  assign one or more orientations to each keypoint location based on local image gradient directions. Last  measure the local image gradients at the selected scale in the region around each keypoint. And then use the KNN algorithm to match the features. Through lots of experiments and comparing with other feature extraction methods  this method can detect the features of the teeth model effectively  and offer some available parameters for 3D reconstruction of the teeth model. the authors.  
Local Feature Based Geometric-Resistant Image Information Hiding 期刊论文  OAI收割
cognitive computation, 2010, 卷号: 2, 期号: 2, 页码: 68-77
作者:  
Gao, Xinbo;  Deng, Cheng;  Li, Xuelong;  Tao, Dacheng
收藏  |  浏览/下载:191/32  |  提交时间:2011/01/11
Visual neuroscience research in China 期刊论文  OAI收割
SCIENCE CHINA-LIFE SCIENCES, 2010, 卷号: 53, 期号: 3, 页码: 363-373
Yao HaiShan; Lu HaiDong; Wang Wei
收藏  |  浏览/下载:28/0  |  提交时间:2012/07/13
A New Image Feature Point Detection Method Based on Log-Gabor Gradient Feature 会议论文  OAI收割
2009 Joint Urban Remote Sensing Event, Vols 1-3, New York
Yang Jian; Zhao Zhongming
收藏  |  浏览/下载:12/0  |  提交时间:2014/12/07
图像特征检测与匹配研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2008
作者:  
王志衡
收藏  |  浏览/下载:82/0  |  提交时间:2015/09/02
Integrated intensity, orientation code and spatial information for robust tracking (EI CONFERENCE) 会议论文  OAI收割
2007 2nd IEEE Conference on Industrial Electronics and Applications, ICIEA 2007, May 23, 2007 - May 25, 2007, Harbin, China
作者:  
Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.
收藏  |  浏览/下载:26/0  |  提交时间:2013/03/25
real-time tracking is an important topic in computer vision. Conventional single cue algorithms typically fail outside limited tracking conditions. Integration of multimodal visual cues with complementary failure modes allows tracking to continue despite losing individual cues. In this paper  we combine intensity  orientation codes and special information to form a new intensity-orientation codes-special (IOS) feature to represent the target. The intensity feature is not affected by the shape variance of object and has good stability. Orientation codes matching is robust for searching object in cluttered environments even in the cases of illumination fluctuations resulting from shadowing or highlighting  etc The spatial locations of the pixels are used which allow us to take into account the spatial information which is lost in traditional histogram. Histograms of intensity  orientation codes and spatial information are employed for represent the target Mean shift algorithm is a nonparametric density estimation method. The fast and optimal mode matching can be achieved by this method. In order to reduce the compute time  we use the mean shift procedure to reach the target localization. Experiment results show that the new method can successfully cope with clutter  partial occlusions  illumination change  and target variations such as scale and rotation. The computational complexity is very low. If the size of the target is 3628 pixels  it only needs 12ms to complete the method. 2007 IEEE.