中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [6]
地质与地球物理研究所 [3]
长春光学精密机械与物... [2]
计算技术研究所 [1]
国家空间科学中心 [1]
寒区旱区环境与工程研... [1]
更多
采集方式
OAI收割 [16]
iSwitch采集 [1]
内容类型
期刊论文 [10]
会议论文 [5]
学位论文 [2]
发表日期
2024 [1]
2023 [1]
2019 [1]
2018 [2]
2017 [1]
2016 [2]
更多
学科主题
筛选
浏览/检索结果:
共17条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Nonlinear Filtering With Sample-Based Approximation Under Constrained Communication: Progress, Insights and Trends
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2024, 卷号: 11, 期号: 7, 页码: 1539-1556
作者:
Weihao Song
;
Zidong Wang
;
Zhongkui Li
;
Jianan Wang
;
Qing-Long Han
  |  
收藏
  |  
浏览/下载:9/0
  |  
提交时间:2024/06/07
Communication constraints
maximum correntropy filter
networked nonlinear filtering
particle filter
sample-based approximation
unscented Kalman filter
Visual group target tracking algorithm based on MeanShift-PCA-PF
会议论文
OAI收割
Hybrid, Xi'an, China, 2023-04-21
作者:
Li, Jianing
;
Tian, Yan
;
Guo, Min
;
Zuo, Kaige
;
Wang, Xin
  |  
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2023/11/09
group targets
target tracking
clustering detection
particle filtering
Robust correlation filter tracking with deep semantic supervision
期刊论文
OAI收割
IET IMAGE PROCESSING, 2019, 卷号: 13, 期号: 5, 页码: 754-760
作者:
Wang, Wei
;
Chen, Zhaoming
;
Douadji, Lyes
;
Shi, Mingquan
  |  
收藏
  |  
浏览/下载:86/0
  |  
提交时间:2019/06/24
particle filtering (numerical methods)
learning (artificial intelligence)
target tracking
convolutional neural nets
robust correlation filter tracking
high tracking performance
tracking failure
deep semantic supervision tracking framework
redetection tracking mechanism
particle filtering resampling
CF tracker
deep convolutional neural network
tracking frames
target occlusion
handcrafted features
real-time performance
OTB2013 benchmark datasets
OTB2015 benchmark datasets
Sparse solution of PP-PS joint inversion with constraint of particle filtering
期刊论文
OAI收割
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2018, 卷号: 61, 期号: 3, 页码: 1169-1177
作者:
Wang YanFei
;
Tang Jing
;
Geng WeiFeng
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2018/09/26
Joint inversion
Particle filtering
Regularization
l(1) norm
Sparse solution
Sparse solution of PP-PS joint inversion with constraint of particle filtering
期刊论文
OAI收割
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2018, 卷号: 61, 期号: 3, 页码: 1169-1177
作者:
Wang YanFei
;
Tang Jing
;
Geng WeiFeng
;
Wang ChengXiang
  |  
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2018/09/26
Joint inversion
Particle filtering
Regularization
l(1) norm
Sparse solution
PP and PS joint inversion with a posterior constraint and with particle filtering
期刊论文
OAI收割
JOURNAL OF GEOPHYSICS AND ENGINEERING, 2017, 卷号: 14, 期号: 6, 页码: 1399-1412
作者:
Tang, Jing
;
Wang, Yanfei
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2017/11/24
joint inversion
regularization
particle filtering
A Parallel Markov Cerebrovascular Segmentation Algorithm Based on Statistical Model
期刊论文
OAI收割
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2016, 卷号: 31, 期号: 2, 页码: 400-416
作者:
Cao, Rong-Fei
;
Wang, Xing-Ce
;
Wu, Zhong-Ke
;
Zhou, Ming-Quan
;
Liu, Xin-Yu
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2019/12/13
cerebrovascular segmentation
non-local means filtering
Markov random field
particle swarm optimization algorithm
Chaos particle swarm optimization combined with circular median filtering for geophysical parameters retrieval from Windsat
期刊论文
OAI收割
JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2016, 卷号: 15, 期号: 4, 页码: 593-605
作者:
Zhang Lei
;
Wang Zhenzhan
;
Shi Hanqing
;
Long Zhiyong
;
Du Huadong
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2016/11/08
WindSat
polarimetric microwave radiometer
wind retrieval
chaotic particle swarm optimization
circular median filtering
Efficient Object Tracking by Incremental Self-Tuning Particle Filtering on the Affine Group
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 卷号: 21, 期号: 3, 页码: 1298-1313
作者:
Li, Min
;
Tan, Tieniu
;
Chen, Wei
;
Huang, Kaiqi
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2015/08/12
Incremental self-tuning particle filtering (ISPF)
pose estimator (PE)
sparse sampling
visual tracking
The new approach for infrared target tracking based on the particle filter algorithm (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Infrared Imaging and Applications, May 24, 2011 - May 24, 2011, Beijing, China
作者:
Sun H.
;
Han H.-X.
;
Sun H.
收藏
  |  
浏览/下载:57/0
  |  
提交时间:2013/03/25
Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring
precision
and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection
the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure
but in order to capture the change of the state space
it need a certain amount of particles to ensure samples is enough
and this number will increase in accompany with dimension and increase exponentially
this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining"
we expand the classic Mean Shift tracking framework.Based on the previous perspective
we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis
Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism
used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy to further improve tracking performance. Experimental results show that this algorithm can compensate shortcoming of the particle filter has too much computation
and can effectively overcome the fault that mean shift is easy to fall into local extreme value instead of global maximum value.Last because of the gray and fusion target motion information
this approach also inhibit interference from the background
ultimately improve the stability and the real-time of the target track. 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).