中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
数学与系统科学研究院 [5]
力学研究所 [3]
烟台海岸带研究所 [2]
海洋研究所 [1]
采集方式
OAI收割 [11]
内容类型
期刊论文 [10]
CNKI期刊论文 [1]
发表日期
2025 [1]
2024 [1]
2023 [2]
2022 [4]
2021 [3]
学科主题
筛选
浏览/检索结果:
共11条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Direct numerical simulation of natural convection based on parameter-input physics-informed neural networks
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 卷号: 236, 页码: 126379
作者:
Ye,Shuran
;
Huang JL(黄剑霖)
;
Zhang, Zhen
;
Wang YW(王一伟)
;
Huang CG(黄晨光)
  |  
收藏
  |  
浏览/下载:3/0
  |  
提交时间:2024/12/02
Natural convection
Physics-informed neural networks
Parameter-input PINNs
Ra number
Deep learning
AsPINN: Adaptive symmetry-recomposition physics-informed neural networks
期刊论文
OAI收割
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 卷号: 432, 页码: 34
作者:
Liu ZT(刘子提)
;
Liu Y(刘洋)
;
Yan, Xunshi
;
Liu W(刘文)
;
Guo SQ(郭帅旗)
  |  
收藏
  |  
浏览/下载:8/0
  |  
提交时间:2024/11/01
Network structure
Parameter-sharing
Feature-enhanced physics-informed neural
networks
Symmetry decomposition
A Review of Application of Machine Learning in Storm Surge Problems
期刊论文
OAI收割
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 卷号: 11, 期号: 9, 页码: 35
作者:
Qin, Yue
;
Su, Changyu
;
Chu, Dongdong
;
Zhang, Jicai
;
Song, Jinbao
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2023/11/15
storm surge prediction
machine learning
hybrid methods
physics-informed neural networks
A Review of Application of Machine Learning in Storm Surge Problems
期刊论文
OAI收割
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 卷号: 11, 期号: 9, 页码: 35
作者:
Qin, Yue
;
Su, Changyu
;
Chu, Dongdong
;
Zhang, Jicai
;
Song, Jinbao
  |  
收藏
  |  
浏览/下载:10/0
  |  
提交时间:2024/11/02
storm surge prediction
machine learning
hybrid methods
physics-informed neural networks
Monte Carlo fPINNs: Deep learning method for forward and inverse problems involving high dimensional fractional partial differential equations
期刊论文
OAI收割
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 卷号: 400, 页码: 17
作者:
Guo, Ling
;
Wu, Hao
;
Yu, Xiaochen
;
Zhou, Tao
  |  
收藏
  |  
浏览/下载:47/0
  |  
提交时间:2023/02/07
Physics -informed neural networks
Fractional Laplacian
Nonlocal operators
Uncertainty quantification
Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations
CNKI期刊论文
OAI收割
2022
作者:
Yuchao Zhu
;
Rong-Hua Zhang
;
James N.Moum
;
Fan Wang
;
Xiaofeng Li
  |  
收藏
  |  
浏览/下载:1/0
  |  
提交时间:2024/12/18
physics-informed deep learning
climate model biases
ocean vertical-mixing parameterizations
long-term turbulence data
artificial neural networks under physics constraint
Data-Driven Deep Learning for The Multi-Hump Solitons and Parameters Discovery in NLS Equations with Generalized PT-Scarf-II Potentials
期刊论文
OAI收割
NEURAL PROCESSING LETTERS, 2022, 页码: 19
作者:
Zhong, Ming
;
Zhang, Jian-Guo
;
Zhou, Zijian
;
Tian, Shou-Fu
;
Yan, Zhenya
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2023/02/07
Focusing and defocusing nonlinear Schrodinger equations
Generalized PT-Scarf-II potential
Physics-informed deep neural networks
Data-driven solitons and parameters discovery
A Direct-Forcing Immersed Boundary Method for Incompressible Flows Based on Physics-Informed Neural Network
期刊论文
OAI收割
Fluids, 2022, 卷号: 7, 期号: 2, 页码: 56
作者:
Huang Y(黄毅)
;
Zhang ZY(张治愚)
;
Zhang X(张星)
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2022/01/27
physics-informed neural networks (PINN)
direct-forcing immersed boundary method
incompressible laminar flow
circular cylinder
Data-driven peakon and periodic peakon solutions and parameter discovery of some nonlinear dispersive equations via deep learning
期刊论文
OAI收割
PHYSICA D-NONLINEAR PHENOMENA, 2021, 卷号: 428, 页码: 15
作者:
Wang, Li
;
Yan, Zhenya
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2022/04/02
Nonlinear dispersive equation
Initial-boundary value conditions
Physics-informed neural networks
Deep learning
Data-driven peakon and periodic peakon
solutions Data-driven parameter discovery
Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrodinger equation with a potential using the PINN deep learning
期刊论文
OAI收割
PHYSICS LETTERS A, 2021, 卷号: 404, 页码: 7
作者:
Wang, Li
;
Yan, Zhenya
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2021/10/26
Defocusing NLS equation with the
time-dependent potential
Initial-boundary value conditions
Physics-informed neural networks
Deep learning
Data-driven rogue waves and parameter discovery