中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [12]
沈阳自动化研究所 [3]
合肥物质科学研究院 [2]
重庆绿色智能技术研究... [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [19]
内容类型
期刊论文 [18]
会议论文 [1]
发表日期
2024 [1]
2023 [4]
2022 [3]
2021 [6]
2020 [1]
2019 [2]
更多
学科主题
筛选
浏览/检索结果:
共19条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Knowledge enhanced ensemble method for remaining useful life prediction under variable working conditions
期刊论文
OAI收割
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 卷号: 242, 页码: 13
作者:
Li, Yuan
;
Li, Jingwei
;
Wang, Huanjie
;
Liu, Chengbao
;
Tan, Jie
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2024/02/22
Remaining useful life
Ensemble learning
Attention mechanism
Convolutional neural network
Transfer learning
Aero-Engine Remaining Useful Life Estimation Based on CAE-TCN Neural Networks
期刊论文
OAI收割
APPLIED SCIENCES-BASEL, 2023, 卷号: 13, 期号: 1, 页码: 15
作者:
Ren, Guanghao
;
Wang, Yun
;
Shi, Zhenyun
;
Zhang, Guigang
;
Jin, Feng
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2023/02/22
remaining useful life estimation
aero-engine
convolutional autoencoder
temporal convolutional network
Uncertainty Quantification in Remaining Useful Life Prediction under Covariate Shift
期刊论文
OAI收割
Neural Computing and Applications, 2023, 页码: 28
作者:
Wang Huanjie
;
Bai Xiwei
;
Tan Jie
;
Liu Chengbao
  |  
收藏
  |  
浏览/下载:13/0
  |  
提交时间:2023/06/19
Remaining useful life
Uncertainty quantification
Bayesian convolutional neural network
Remaining Useful Life Prediction With Partial Sensor Malfunctions Using Deep Adversarial Networks
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2023, 卷号: 10, 期号: 1, 页码: 121-134
作者:
Xiang Li
;
Yixiao Xu
;
Naipeng Li
;
Bin Yang
;
Yaguo Lei
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2023/01/03
Adversarial training
data fusion
deep learning
remaining useful life (RUL) prediction
sensor malfunction
A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2023, 卷号: 10, 期号: 1, 页码: 177-187
作者:
Qing Xu
;
Min Wu
;
Edwin Khoo
;
Zhenghua Chen
;
Xiaoli Li
  |  
收藏
  |  
浏览/下载:54/0
  |  
提交时间:2023/01/03
Deep learning
early prediction
lithium-ion battery
remaining useful life (RUL)
A 2-D Long Short-Term Memory Fusion Networks for Bearing Remaining Useful Life Prediction
期刊论文
OAI收割
IEEE SENSORS JOURNAL, 2022, 卷号: 22, 期号: 22, 页码: 21806-21815
作者:
Li, Yuan
;
Wang, Huanjie
;
Li, Jingwei
;
Tan, Jie
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2023/03/20
Hidden Markov models
Feature extraction
Predictive models
Sensors
Mathematical models
Data models
Adaptation models
2-D long short-term memory (2D-LSTM)
fault occurrence time (FOT) detection
information fusion unit (IFU)
remaining useful life (RUL) prediction
An Age-Dependent and State-Dependent Adaptive Prognostic Approach for Hidden Nonlinear Degrading System
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2022, 卷号: 9, 期号: 5, 页码: 907-921
作者:
Zhenan Pang
;
Xiaosheng Si
;
Changhua Hu
;
Zhengxin Zhang
  |  
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2022/04/24
Expectation-maximization (EM)
hidden degradation state
Kalman filter (KF)
remaining useful life (RUL)
unit-to-unit variability
Position Encoding Based Convolutional Neural Networks for Machine Remaining Useful Life Prediction
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2022, 卷号: 9, 期号: 8, 页码: 1427-1439
作者:
Ruibing Jin
;
Min Wu
;
Keyu Wu
;
Kaizhou Gao
;
Zhenghua Chen
  |  
收藏
  |  
浏览/下载:47/0
  |  
提交时间:2022/08/01
Convolutional neural network (CNN)
deep learning
position encoding
remaining useful life prediction
A Switching Hidden Semi-Markov Model for Degradation Process and Its Application to Time-Varying Tool Wear Monitoring
期刊论文
OAI收割
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 卷号: 17
作者:
Liu, Tongshun
;
Zhu, Kunpeng
  |  
收藏
  |  
浏览/下载:37/0
  |  
提交时间:2021/03/15
Condition monitoring
degradation process
remaining useful life (RUL)
switching hidden semi-Markov model (SHSMM)
tool wear monitoring (TWM)
A Regularized LSTM Method for Predicting Remaining Useful Life of Rolling Bearings
期刊论文
OAI收割
International Journal of Automation and Computing, 2021, 卷号: 18, 期号: 4, 页码: 581-593
作者:
Zhao-Hua Liu
;
Liang Chen
  |  
收藏
  |  
浏览/下载:48/0
  |  
提交时间:2021/07/20
Deep learning
fault diagnosis
fault prognosis
long and short time memory network (LSTM)
rolling bearing
rotating machinery
regularization
remaining useful life prediction (RUL)
recurrent neural network (RNN)