中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共12条,第1-10条 帮助

条数/页: 排序方式:
Enhancing DeepLabv3+Convolutional Neural Network Model for Precise Apple Orchard Identification Using GF-6 Remote Sensing Images and PIE-Engine Cloud Platform 期刊论文  OAI收割
REMOTE SENSING, 2025, 卷号: 17, 期号: 11, 页码: 1923
作者:  
Gao, Guining;  Chen, Zhihan;  Wei, Yicheng;  Zhu, Xicun;  Yu, Xinyang
  |  收藏  |  浏览/下载:3/0  |  提交时间:2025/07/18
Application of Unmanned Aerial Vehicle Remote Sensing on Dangerous Rock Mass Identification and Deformation Analysis: Case Study of a High-Steep Slope in an Open Pit Mine 期刊论文  OAI收割
JOURNAL OF EARTH SCIENCE, 2025, 卷号: 36, 期号: 2, 页码: 750-763
作者:  
Du, Wenjie;  Sheng, Qian;  Fu, Xiaodong;  Chen, Jian;  Kang, Jingyu
  |  收藏  |  浏览/下载:10/0  |  提交时间:2025/06/27
Rapid identification method for on-road high-emission vehicle based on deep semi-supervised anomaly detection 期刊论文  OAI收割
MEASUREMENT, 2025, 卷号: 239
作者:  
Han, Lingran;  Zhang, Yujun;  He, Ying;  You, Kun;  Liu, Wenqing
  |  收藏  |  浏览/下载:19/0  |  提交时间:2024/11/20
Spectral-spatial Classification of Hyperspectral Images Using Signal Subspace Identification and Edge-preserving Filter 期刊论文  OAI收割
International Journal of Automation and Computing, 2020, 卷号: 17, 期号: 2, 页码: 222-232
作者:  
Negin Alborzi;  Fereshteh Poorahangaryan;  Homayoun Beheshti
  |  收藏  |  浏览/下载:29/0  |  提交时间:2021/02/22
Rapid identification of landslide, collapse and crack based on low-altitude remote sensing image of UAV 期刊论文  OAI收割
JOURNAL OF MOUNTAIN SCIENCE, 2020, 卷号: 17, 期号: 12, 页码: 2915-2928
作者:  
Lian Xu-gang;  Li Zou-jun;  Yuan Hong-yan;  Liu Ji-bo;  Zhang Yan-jun
  |  收藏  |  浏览/下载:18/0  |  提交时间:2023/02/17
An Improved Multi-temporal and Multi-feature Tea Plantation Identification Method Using Sentinel-2 Imagery 期刊论文  OAI收割
SENSORS, 2019, 卷号: 19, 期号: 9, 页码: 16
作者:  
Zhu, Jun;  Pan, Ziwu;  Wang, Hang;  Huang, Peijie;  Sun, Jiulin
  |  收藏  |  浏览/下载:92/0  |  提交时间:2019/09/24
An Effective Method for Snow-Cover Mapping of Dense Coniferous Forests in the Upper Heihe River Basin Using Landsat Operational Land Imager Data 期刊论文  iSwitch采集
REMOTE SENSING, 2015, 卷号: 7, 期号: 12, 页码: 17246-17257
作者:  
Wang, Xiao-Yan;  Wang, Jian;  Jiang, Zhi-Yong;  Li, Hong-Yi;  Hao, Xiao-Hua
收藏  |  浏览/下载:104/0  |  提交时间:2019/10/09
Super-Resolution Land Cover Mapping Based on Multiscale Spatial Regularization SCI/SSCI论文  OAI收割
2015
作者:  
Hu J. L.;  Ge, Y.;  Chen, Y. H.;  Li, D. Y.
收藏  |  浏览/下载:34/0  |  提交时间:2015/12/09
Rice monitoring with polarimetric radarsat-2 data 会议论文  OAI收割
34th Asian Conference on Remote Sensing 2013, ACRS 2013,, Bali, Indonesia, October 20, 2013 - October 24,2013
Shao; Li, Kun; Liu, Long; Yang, Zhi
收藏  |  浏览/下载:29/0  |  提交时间:2014/12/07
Retrieval of snow depth in Northeast China using FY-3B/MWRI passive microwave remote sensing data (EI CONFERENCE) 会议论文  OAI收割
Satellite Data Compression, Communications, and Processing VIII, August 12, 2012 - August 13, 2012, San Diego, CA, United states
Ren R.; Gu L.; Chen H.; Cao J.
收藏  |  浏览/下载:146/0  |  提交时间:2013/03/25
Comparing with optical remote sensing techniques  passive remote sensing data have been proved to be effective for observing snowpack parameters such as snow depth and snow water equivalent  which can penetrate snowpack without clouds interferences. The Microwave Radiation Imager (MWRI) loaded on the Chinese FengYun-3B (FY-3B) satellite is gradually used in the global environment research through November  2011. In this paper  we proposed a snow depth retrieval algorithm to estimate snow depth in Northeast China using MWRI passive microwave remote sensing data. A decision tree method of snow identification was firstly designed to distinguish different snow cover conditions in order to eliminate other interference signals. After using the proposed decision tree method  the processing results were further used to retrieve the snow depth in Northeast China. Finally  the practical snow depth data and the MODIS data were collected for the accuracy assessment of the proposed snow depth retrieval method. The experimental results demonstrated that the RMSE of snow depth used the proposed method was approximately 3 cm in Northeast China. 2012 SPIE.