中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [2]
数学与系统科学研究院 [1]
武汉物理与数学研究所 [1]
自动化研究所 [1]
重庆绿色智能技术研究... [1]
采集方式
OAI收割 [6]
内容类型
期刊论文 [4]
会议论文 [2]
发表日期
2021 [2]
2013 [1]
2010 [3]
学科主题
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Efficient and High-quality Recommendations via Momentum-incorporated Parallel Stochastic Gradient Descent-Based Learning
期刊论文
OAI收割
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 卷号: 8, 期号: 2, 页码: 402-411
作者:
Luo, Xin
;
Qin, Wen
;
Dong, Ani
;
Sedraoui, Khaled
;
Zhou, MengChu
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2021/03/17
Big data
industrial application
industrial data
latent factor analysis
machine learning
parallel algorithm
recommender system (RS)
stochastic gradient descent (SGD)
Efficient and High-quality Recommendations via Momentum-incorporated Parallel Stochastic Gradient Descent-Based Learning
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2021, 卷号: 8, 期号: 2, 页码: 402-411
作者:
Xin Luo
;
Wen Qin
;
Ani Dong
;
Khaled Sedraoui
;
MengChu Zhou
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2021/04/09
Big data
industrial application
industrial data
latent factor analysis
machine learning
parallel algorithm
recommender system (RS)
stochastic gradient descent (SGD)
Convergence acceleration algorithms related to a generalized E-transformation and its particular cases
期刊论文
OAI收割
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2013, 卷号: 30, 期号: 2, 页码: 263-285
作者:
He, Yi
;
Hu, Xing-Biao
;
Tam, Hon-Wah
;
Tsujimoto, Satoshi
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2015/06/23
E-transformation
epsilon-algorithm
G-algorithm
rs-algorithm
qd-algorithm
A generalization of the G-transformation and the related algorithms
期刊论文
OAI收割
APPLIED NUMERICAL MATHEMATICS, 2010, 卷号: 60, 期号: 12, 页码: 1221-1230
作者:
Brezinski, Claude
;
He, Yi
;
Hu, Xing-Biao
;
Sun, Jian-Qing
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2018/07/30
G-transformation
G-algorithm
rs-algorithm
qd-algorithm
A new method of target recognition based on rough set and support vector machine (EI CONFERENCE)
会议论文
OAI收割
2nd International Conference on Image Analysis and Signal Processing, IASP'2010, April 12, 2010 - April 14, 2010, Xiamen, China
作者:
He X.
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2013/03/25
Automatic target recognition (ATR) is an important task in image application. This paper concentrates on two key subroutines of ATR system: Pre-treatment and design of classifier. In the pre-treatment subroutine
a new method based on Rough Set (RS) is proposed to partition the original sample set into some subsets and calculate their class membership
so that some samples can be chosen by class membership to be trained. After pre-treatment
an iterative algorithm based on Rough Set and Support Vector Machines (IRSSVM) is introduced to design a classifier for recognizing two types of targets. The experiment results show that IRSSVM needs less training time and the classifier is simpler and has more generalization and higher recognition rate. 2010 IEEE.
A design of high-speed and low-consume parallel grouping RS code and simulation (EI CONFERENCE)
会议论文
OAI收割
2010 3rd International Conference on Advanced Computer Theory and Engineering, ICACTE 2010, August 20, 2010 - August 22, 2010, Chengdu, China
Chen C.
;
Jin G.
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2013/03/25
RS code is a linear error correction codes with better error correction capability
is widely used in different kinds of occasions for communications or data storage. But for its high difficulty of coding and decoding algorithm and low throughput
optimization RS algorithm is always studied as one of the focus in the error-correction field. A new coding method
parallel coding and decoding data into groups in lower step finite field for avoiding complex matrix iteration and Chien search computation
is proposed in this paper. It is proved that the coding and decoding throughput of the parallel grouping RS coder is increased and the hardware complexity is reduced with changeless error-correction capability from the simulation results using ModelSim SE 6.0 and synthetic results using ISE 9.11. 2010 IEEE.