中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [1]
武汉物理与数学研究所 [1]
烟台海岸带研究所 [1]
采集方式
OAI收割 [3]
内容类型
期刊论文 [2]
会议论文 [1]
发表日期
2017 [1]
2016 [1]
2010 [1]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Refinement of Methodology for Cadmium Determination in Soil Micro-Arthropod Tissues
期刊论文
OAI收割
PEDOSPHERE, 2017, 卷号: 27, 期号: 3, 页码: 491-501
作者:
Zhu Dong
;
Ke Xin
;
Wu Longhua
;
Huang Yujuan
;
Peter Christie
收藏
  |  
浏览/下载:39/0
  |  
提交时间:2017/09/05
digestion
defecation
Folsomia candida
micro-samples
predatory mite
sample pre-treatment
ultrasonic cleaning
Recent developments in sample preparation and data pre-treatment in metabonomics research
期刊论文
OAI收割
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2016, 卷号: 589, 页码: 4-9
作者:
Li, Ning
;
Song, Yi Peng
;
Tang, Huiru
;
Wang, Yulan
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2016/03/08
Metabonomics research
Sample preparation
Data pre-treatment
A new method of target recognition based on rough set and support vector machine (EI CONFERENCE)
会议论文
OAI收割
2nd International Conference on Image Analysis and Signal Processing, IASP'2010, April 12, 2010 - April 14, 2010, Xiamen, China
作者:
He X.
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2013/03/25
Automatic target recognition (ATR) is an important task in image application. This paper concentrates on two key subroutines of ATR system: Pre-treatment and design of classifier. In the pre-treatment subroutine
a new method based on Rough Set (RS) is proposed to partition the original sample set into some subsets and calculate their class membership
so that some samples can be chosen by class membership to be trained. After pre-treatment
an iterative algorithm based on Rough Set and Support Vector Machines (IRSSVM) is introduced to design a classifier for recognizing two types of targets. The experiment results show that IRSSVM needs less training time and the classifier is simpler and has more generalization and higher recognition rate. 2010 IEEE.