中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [2]
长春光学精密机械与物... [2]
成都山地灾害与环境研... [1]
水土保持研究所 [1]
采集方式
OAI收割 [6]
内容类型
SCI/SSCI论文 [2]
会议论文 [2]
期刊论文 [2]
发表日期
2019 [1]
2016 [2]
2015 [1]
2006 [2]
学科主题
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Mapping irrigated and rainfed wheat areas using high spatial–temporal resolution data generated by Moderate Resolution Imaging Spectroradiometer and Landsat
期刊论文
OAI收割
Journal of Applied Remote Sensing, 2019, 卷号: 12, 期号: 4, 页码: 046023
作者:
Lingling Zhang
;
Qin’ge Dong
;
Ning Jin
;
Tinglong Zhang
  |  
收藏
  |  
浏览/下载:380/0
  |  
提交时间:2019/06/11
Irrigated And Rainfed Wheat
Spatial And Temporal Adaptive Reflectance Fusion Model
Quantifying Spatial-Temporal Pattern of Urban Heat Island in Beijing: An Improved Assessment Using Land Surface Temperature (LST) Time Series Observations From LANDSAT, MODIS, and Chinese New Satellite GaoFen-1
SCI/SSCI论文
OAI收割
2016
作者:
Liu K.
;
Su, H. B.
;
Li, X. K.
;
Wang, W. M.
;
Yang, L. J.
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2017/11/09
GF-1
LANDSAT
landscape analysis
MODIS
spatial and temporal adaptive
reflectance fusion model (STARFM)
surface urban heat island (SUHI)
remote-sensing images
climate-change
landscape metrics
use/land-cover
united-states
public-health
major cities
sensor data
tm data
resolution
Quantifying Spatial-Temporal Pattern of Urban Heat Island in Beijing: An Improved Assessment Using Land Surface Temperature (LST) Time Series Observations From LANDSAT, MODIS, and Chinese New Satellite GaoFen-1
SCI/SSCI论文
OAI收割
2016
作者:
Liu K.
;
Su, H. B.
;
Li, X. K.
;
Wang, W. M.
;
Yang, L. J.
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2016/12/16
GF-1
LANDSAT
landscape analysis
MODIS
spatial and temporal adaptive
reflectance fusion model (STARFM)
surface urban heat island (SUHI)
remote-sensing images
climate-change
landscape metrics
use/land-cover
united-states
public-health
major cities
sensor data
tm data
resolution
Comparative Analysis on Two Schemes for Synthesizing the High Temporal Landsat-like NDVI Dataset Based on the STARFM Algorithm
期刊论文
OAI收割
ISPRS International Journal of Geo-Information, 2015, 卷号: 4, 期号: 3, 页码: 1423-1441
作者:
Li, Ainong
;
Zhang, Wei
;
Lei, Guangbin
;
Bian, Jinhu
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2015/12/21
high temporal and spatial resolutions
time-series NDVI
Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM)
cropping intensity
crop peak date
hills area
An adaptive temporal filter based on motion compensation for video noise reduction (EI CONFERENCE)
会议论文
OAI收割
2006 International Conference on Communication Technology, ICCT '06, November 27, 2006 - November 30, 2006, Guilin, China
作者:
Li Y.
;
Li Y.
;
Li Y.
;
Li Y.
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2013/03/25
Noise in video signals will degrades the image quality. In this paper
an adaptive temporal filter based on motion compensation is proposed for noise reduction. The noise in video sequence is tracked by motion compensation in temporal domain. The filtering strength can be adaptive changed on object motion situation. The experiment results show that the proposed filter is better than the filter in spatial domain. The noise in video signals can be effectively reduced and the image will not be blurry as the result of spatial filter.
Novel adaptive temporal filter based on motion compensation for video noise reduction (EI CONFERENCE)
会议论文
OAI收割
2006 International Symposium on Communications and Information Technologies, ISCIT, October 18, 2006 - October 20, 2006, Bangkok, Thailand
Yan L.
;
Yanfeng Q.
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2013/03/25
Noise in video signals will degrades the image quality. In this paper
a novel adaptive temporal filter based on motion compensation is proposed for noise reduction. The noise in video sequence is tracked by motion compensation in temporal domain. The filtering strength can be adaptive changed on object motion situation. The experiment results show that the proposed filter is better than the filter in spatial domain. The noise in video signals can be effectively reduced and the image will not be blurry as the result of spatial filter. 2006 IEEE.