中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [3]
长春光学精密机械与物... [2]
广州能源研究所 [1]
采集方式
OAI收割 [6]
内容类型
期刊论文 [3]
会议论文 [2]
学位论文 [1]
发表日期
2022 [1]
2021 [2]
2012 [2]
2006 [1]
学科主题
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Uncovering the key mechanisms of how deep decarbonization benefits air pollution alleviation in China
期刊论文
OAI收割
ENVIRONMENTAL RESEARCH LETTERS, 2022, 卷号: 17, 期号: 11, 页码: 15
作者:
Liu, Xiaorui
;
Guo, Chaoyi
;
Ma, Xiaotian
;
Wu, Kai
;
Wang, Peng
  |  
收藏
  |  
浏览/下载:6/0
  |  
提交时间:2024/12/03
1.5 degrees C target
2 degrees C target
air pollutant
IMED vertical bar CGE model
decomposition analysis
regression model
Greater Bay Area in China
Siamese Regression Tracking With Reinforced Template Updating
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 卷号: 30, 页码: 628-640
作者:
Zhao, Fei
;
Zhang, Ting
;
Song, Yibing
;
Tang, Ming
;
Wang, Xiaobo
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2021/03/02
Target tracking
Training
Reinforcement learning
Visualization
Task analysis
Benchmark testing
Head
Siamese regression tracking
actor-critic network
reinforcement learning
Fire Detection Method Based on Depthwise Separable Convolution and YOLOv3
期刊论文
OAI收割
International Journal of Automation and Computing, 2021, 卷号: 18, 期号: 2, 页码: 300-310
作者:
Yue-Yan Qin
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2021/04/22
Fire detection
depthwise separable convolution
fire classification
You Only Look Once version 3 (YOLOv3)
target regression
基于生物网络的关联发现关键技术研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2012
作者:
刘西
收藏
  |  
浏览/下载:73/0
  |  
提交时间:2015/09/02
本体
生物网络
贝叶斯回归
网络拓扑
致病基因
药物靶标
网络药理学
关联发现
Ontology
Bio-network
Bayesian Regression
Network Topology
Disease Gene
Drug Target
Network Pharmacology
Association Discovery
Tracking error estimate for theodolite based on general regression neural network (EI CONFERENCE)
会议论文
OAI收割
3rd international Conference on Manufacturing Science and Engineering, ICMSE 2012, March 27, 2012 - March 29, 2012, Xiamen, China
作者:
Li M.
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2013/03/25
To efficiently evaluate the tracking index of theodolite
as well as avoiding influence resulted from higher harmonics when used opto dynamic target and use equivalent sine to evaluate the tracking index
in this paper
we resorted to General Regression Neural Network to do the new research on theodolite tracking accuracy evaluation method. Experimental results indicate that the method realized the equivalent sine to evaluate the tracking index of theodolite and avoided the higher harmonics influence with opto dynamic target. The research in this paper has important value to the engineering practice. (2012) Trans Tech Publications.
Study on color model conversion for camera with neural network based on the combination between second general revolving combination design and genetic algorithm (EI CONFERENCE)
会议论文
OAI收割
ICO20: Illumination, Radiation, and Color Technologies, August 21, 2005 - August 26, 2005, Changchun, China
作者:
Li Z.
;
Zhou F.
;
Wang C.
;
Li Z.
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2013/03/25
Munsell color system is selected to establish the mutual conversion between RGB and L*a*b* color model for camera. The color luminance meter and CCD camera synchronously measure the same color card
XYZ value is gotten from the color luminance meter
the training error is 0.000748566
it can show that the method combining second general revolving combination design with genetic algorithm can optimize the hidden-layer structure of neural network. Using the data of testing set to test this network and calculating the color difference between forecast value and true value
the color picture captured from CCD camera is expressed for RGB value as the input of neural network
and the L*a*b* value converted from XYZ value is regarded as the real color value of target card
which the difference is not obvious comparing with forecast result
the maximum is 5.6357 NBS
namely the output of neural network. The neural network of two hidden-layers is considered
the minimum is 0.5311 NBS
so the second general revolving combination design is introduced into optimizing the structure of neural network
and the average of color difference is 3.1744 NBS.
which can carry optimization through unifying project design
data processing and the precision of regression equation. Their mathematics model of encoding space is gained
and the significance inspection shows the confidence degree of regression equation is 99%. The mathematics model is optimized by genetic algorithm
optimization solution is gotten
and function value of the goal is 0.0007168. The neural network of the optimization solution is trained