中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [4]
采集方式
OAI收割 [4]
内容类型
会议论文 [4]
发表日期
2010 [1]
2006 [3]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
Design of high-speed low-noise pre-amplifier for CCD camera (EI CONFERENCE)
会议论文
OAI收割
5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Detector, Imager, Display, and Energy Conversion Technology, April 26, 2010 - April 29, 2010, Dalian, China
作者:
Zhang S.
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2013/03/25
Pre-amplifier circuit is critical for the noise performance of the high speed CCD camera. Its main functions are amplification and impedance transform. The high speed and low noise pre-amplifier of CCD camera is discussed and designed in this paper. The high speed and low noise operational amplifier OPA842 is adopted as the main part. The gain-set resistors for the amplifier are designed optimally. The different precision gain-set resistors are swept using Monte Carlo method. CCD video signal which has high DC offset voltage is AC coupled to the amplifier. The output signal of the amplifier is source terminated using 50 ohms matching resistor so as to transmit the video signal through coaxial cable. When the circuit works in high speed
the PCB will have important effect to circuit performance and can even cause the amplifier unstable due to the parasitic problem of PCB. So the parasitic model of the PCB is established and the PCB layout design issues are also presented. The design result shows that the pre-amplifier can be used in the camera whose pixel rate could be up to 40 MHz and its input referred noise density is about 3 nV/Hz 1/2. 2010 Copyright SPIE - The International Society for Optical Engineering.
Support technique of ultra thin mirror in space optics (EI CONFERENCE)
会议论文
OAI收割
2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes, November 2, 2005 - November 5, 2005, Xian, China
作者:
Ren J.-Y.
;
Gao M.-H.
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2013/03/25
With the development of space optical system
the technique of ultra thin mirror come forth and is paid more attention because of less difficulty in machining
low cost
lightweight
no disassembly during detecting and maintaining. The key technique takes advantage of deformation of ultra thin mirror as the influence of environment to adjust the surface figure. Its accuracy meets requirement. An analysis method is based on finite element analysis (FEA)
and many items
including the amount of support points
the way of arrangement
the optimum design of support component are studied. The finite element method was used to analyze the mirror and some different mirror support schemes. The principal aim of the mirror analysis is to get numbers of support points and the ways of the support. There are three schemes including 12-6-1
12-8-1 and 16-8-1 models. Deformation of deadweight is calculated under the three conditions. The way of 16-8-1 is more suitable than the designs of other two. The support subassembly is amended to meet with the mirror surface RMS in the range of 30m. Deformation of the mirror with support structure has been calculated. The result is 16.52nm
lower than a quarter of the wavelength
which indicates the feasibility of the support scheme applied to mirror. Theoretical result for the best way of support is presented. The result of analysis shows that requirement surface figure could be met through adjusting support points. It predicts feasibility of the support technique and provides theoretical value for active adjustment in the laboratory. At present
support and adjusting experiment of ultra thin mirror is being carried on.
Chip design of linear CCD drive pulse generator and control interface (EI CONFERENCE)
会议论文
OAI收割
2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies - Advanced Optical Manufacturing and Testing Technologies, November 2, 2005 - November 5, 2005, Xian, China
作者:
Sun H.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2013/03/25
CCD noises and their causes are analyzed. Methods to control these noises
such as Correlated Double Sampling (CDS)
filtering
cooling
clamping
and calibration are proposed. To improve CCD sensor's performances
the IC
called Analog Front End (AFE)
integration of CDS
clamping
Programmable Gain Amplifier (PGA)
offset
and ADC
which can fulfill the CDS and analog-to-digital conversion
is employed to process the output signal of CCD. Based on the noise control approaches
the idea of chip design of linear CCD drive pulse generator and control interface is introduced. The chip designed is playing the role of (1) drive pulse generator
for both CCD and AFE
and (2) interface
helping to analysis and transfer control command and status information between MCU controller and drive pulse generator
or between global control unit in the chip and CCD/AFE. There are 6 function blocks in the chip designed
such as clock generator for CCD and AFE
MCU interface
AFE serial interface
output interface
CCD antiblooming parameter register and global control logic unit. These functions are implemented in a CPLD chip
Xilinx XC2C256-6-VQ100
with 20MHz pixel frequency
and 16-bit high resolution. This chip with the AFE can eliminate CCD noise largely and improve the SNR of CCD camera. At last
the design result is presented.
Method for computer-aided alignment of complex optical system (EI CONFERENCE)
会议论文
OAI收割
2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, November 2, 2005 - November 5, 2005, Zian, China
作者:
Yu J.
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2013/03/25
For making complex optical system meet the design requirement
such as the space camera used in remote sensing and UVX lithophotography
especially for off-axis all-reflecting optical system
alignment technology is so necessary. In this paper
a method is presented. Based on the ideas of linearity instead of non-linearity and difference quotient instead of differential quotient
a mathematical model for computer-aided alignment is proposed. This model included the characteristics of the optical system
wavefront difference of its exit pupil and its misalignment of the misaligned optical system. Then comparing self-compiled software with alignment package of CODE V
as a result
this self-compiled software is much more valid than alignment package of CODE V. For a large aperture
long focal length and off-axis three-mirror optical system
computer-aided alignment is successful. Finally
the wavefront error of the middle field is 0.094 waves RMS and the wavefront error of +0.7 field is 0.106 waves RMS and the wavefront error of -0.7 field is 0.125 waves RMS at =632.8nm are obtained.